A Moving-Boundary Problem: Modeling, Analysis and Simulation of Concrete Carbonation PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download A Moving-Boundary Problem: Modeling, Analysis and Simulation of Concrete Carbonation PDF full book. Access full book title A Moving-Boundary Problem: Modeling, Analysis and Simulation of Concrete Carbonation by . Download full books in PDF and EPUB format.

A Moving-Boundary Problem: Modeling, Analysis and Simulation of Concrete Carbonation

A Moving-Boundary Problem: Modeling, Analysis and Simulation of Concrete Carbonation PDF Author:
Publisher: Cuvillier Verlag
ISBN: 3736918771
Category : Mathematics
Languages : en
Pages : 158

Book Description
Environmental impact on concrete parts of buildings results in a variety of unwanted chemical and chemically-induced mechanical changes. The bulk of these changes leads to damaging and destabilization of the concrete itself or of the reinforcement embedded in the concrete. One important destabilization factor is the drop in pH near the steel bars induced by carbonation of the alkaline constituents. This is caused by atmospheric carbon dioxide diffusing in the dry parts and reacting in the wet parts of the concrete pores. The phenomenon is considered as one of the major processes inducing corrosion in concrete. A particular feature of carbonation is the formation of macroscopic sharp reaction interfaces or thin reaction layers that progress into the unsaturated concrete-based materials. The deeper cause for the formation of these patterns is not quite clear, although the major chemical and physical reasons seem to be known. The main objective of this work is to understand the movement of internal reaction layers in order to be able to predict the carbonation penetration. We describe several relevant settings of the carbonation process by means of moving-reaction interface formulations. Non-local dynamic laws are used to model the advancement of the internal layers, which separate different modeling zones. We derive them via first principles for simple geometries using the physics and chemistry of the problem. The moving-boundary methodology essentially relies on these laws, which are usually descriptions of the velocity of the reaction front position. Specifically, the accuracy of the prediction is based on these supplementary relations and on a proper definition of the reaction front position. We investigate the competition between the non-linear carbonation kinetics effects, molecular diffusion and dissolution-precipitation mechanisms, which take place in the unsaturated concrete fabrics. Mathematically, the proposed models form coupled systems of semi-linear partial differential equations in two-phase moving domains. Non-linear transmission conditions of Rankine-Hugoniot type are imposed across the inner boundary that separates the carbonated regions from the uncarbonated ones. The movement of these regions is determined via non-local dynamics laws. Local and global existence, uniqueness and stability of the weak solution with respect to the initial data and parameters are shown. Useful upper and lower bounds, for instance on the velocity of the reaction front and on the time to complete the carbonation of a given part of a concrete sample, are obtained. Monitoring of such processes enables conclusions about the behavior of the moving-reaction front and can lead to a better prediction of penetration depths and of the corrosion initiation time. The moving-boundary methodology is illustrated numerically using experimental data extracted from the literature. The theoretical predictions compare well to the data from accelerated and outdoor tests. In particular, the agreement between the experimentally observed motion trajectory of the reaction front (i.e. penetration depth vs. time curves) and that computed via the proposed models is reasonable.

A Moving-Boundary Problem: Modeling, Analysis and Simulation of Concrete Carbonation

A Moving-Boundary Problem: Modeling, Analysis and Simulation of Concrete Carbonation PDF Author:
Publisher: Cuvillier Verlag
ISBN: 3736918771
Category : Mathematics
Languages : en
Pages : 158

Book Description
Environmental impact on concrete parts of buildings results in a variety of unwanted chemical and chemically-induced mechanical changes. The bulk of these changes leads to damaging and destabilization of the concrete itself or of the reinforcement embedded in the concrete. One important destabilization factor is the drop in pH near the steel bars induced by carbonation of the alkaline constituents. This is caused by atmospheric carbon dioxide diffusing in the dry parts and reacting in the wet parts of the concrete pores. The phenomenon is considered as one of the major processes inducing corrosion in concrete. A particular feature of carbonation is the formation of macroscopic sharp reaction interfaces or thin reaction layers that progress into the unsaturated concrete-based materials. The deeper cause for the formation of these patterns is not quite clear, although the major chemical and physical reasons seem to be known. The main objective of this work is to understand the movement of internal reaction layers in order to be able to predict the carbonation penetration. We describe several relevant settings of the carbonation process by means of moving-reaction interface formulations. Non-local dynamic laws are used to model the advancement of the internal layers, which separate different modeling zones. We derive them via first principles for simple geometries using the physics and chemistry of the problem. The moving-boundary methodology essentially relies on these laws, which are usually descriptions of the velocity of the reaction front position. Specifically, the accuracy of the prediction is based on these supplementary relations and on a proper definition of the reaction front position. We investigate the competition between the non-linear carbonation kinetics effects, molecular diffusion and dissolution-precipitation mechanisms, which take place in the unsaturated concrete fabrics. Mathematically, the proposed models form coupled systems of semi-linear partial differential equations in two-phase moving domains. Non-linear transmission conditions of Rankine-Hugoniot type are imposed across the inner boundary that separates the carbonated regions from the uncarbonated ones. The movement of these regions is determined via non-local dynamics laws. Local and global existence, uniqueness and stability of the weak solution with respect to the initial data and parameters are shown. Useful upper and lower bounds, for instance on the velocity of the reaction front and on the time to complete the carbonation of a given part of a concrete sample, are obtained. Monitoring of such processes enables conclusions about the behavior of the moving-reaction front and can lead to a better prediction of penetration depths and of the corrosion initiation time. The moving-boundary methodology is illustrated numerically using experimental data extracted from the literature. The theoretical predictions compare well to the data from accelerated and outdoor tests. In particular, the agreement between the experimentally observed motion trajectory of the reaction front (i.e. penetration depth vs. time curves) and that computed via the proposed models is reasonable.

Simulation of Time Dependent Degradation of Porous Materials

Simulation of Time Dependent Degradation of Porous Materials PDF Author: Lutz Franke
Publisher: Cuvillier Verlag
ISBN: 3736929021
Category : Architecture
Languages : en
Pages : 416

Book Description
Foreword Porous mineral materials can be damaged by both physical and chemical attack. The presence of an aggressive solution in the pores may induce dissolution of the porous substrate and precipitation of damaging solids, cause chemical changes, or induce swelling processes, all of which lead to damaging mechanical stresses and substrate loss. These damage mechanisms can be denoted altogether as corrosion. Corrosive processes are dependent on the moisture, the temperature, and the concentration and nature of the carried species in the solution as well as on the flux rate at variable concentration and other boundary conditions. From 2002 until 2009 the DFG has financially supported our research in the field of materials science in civil engineering, which is focused on the time-dependent description and prediction of the cited damage mechanisms of porous mineral materials by using numerical simulation under real field conditions. Hereby, the modeling of microstructures and transport processes has been extensively studied. The present book holds the reports published by the involved institutes. Each report contains a summary of the main results achieved in their research. High mathematical complexity and computing cost linked to thorough knowledge of physical chemistry has been required for the successful achievement of the research goals. Indeed, the implemented numerical models and simulation programs, some of which are in ongoing development, provide for an increasingly useful tool to predict the described corrosive processes in engineering and underground constructions as well as in historic buildings.

Free Boundary Problems

Free Boundary Problems PDF Author: Isabel Narra Figueiredo
Publisher: Springer Science & Business Media
ISBN: 3764377194
Category : Mathematics
Languages : en
Pages : 462

Book Description
This book collects refereed lectures and communications presented at the Free Boundary Problems Conference (FBP2005). These discuss the mathematics of a broad class of models and problems involving nonlinear partial differential equations arising in physics, engineering, biology and finance. Among other topics, the talks considered free boundary problems in biomedicine, in porous media, in thermodynamic modeling, in fluid mechanics, in image processing, in financial mathematics or in computations for inter-scale problems.

Adaptive Finite Elements in the Discretization of Parabolic Problems

Adaptive Finite Elements in the Discretization of Parabolic Problems PDF Author: Christian A. Möller
Publisher: Logos Verlag Berlin GmbH
ISBN: 3832528156
Category : Mathematics
Languages : en
Pages : 259

Book Description
Adaptivity is a crucial tool in state-of-the-art scientific computing. However, its theoretical foundations are only understood partially and are subject of current research. This self-contained work provides theoretical basics on partial differential equations and finite element discretizations before focusing on adaptive finite element methods for time dependent problems. In this context, aspects of temporal adaptivity and error control are considered in particular. Based on the gained insights, a specific adaptive algorithm is designed and analyzed thoroughly. Most importantly, it is proven that the presented adaptive method terminates within any demanded error tolerance. Moreover, the developed algorithm is analyzed from a numerical point of view and its performance is compared to well-known standard methods. Finally, it is applied to the real-life problem of concrete carbonation, where two different discretizations are compared.

Computational Modelling of Concrete Structures

Computational Modelling of Concrete Structures PDF Author: Gunther Meschke
Publisher: CRC Press
ISBN: 100011614X
Category : Technology & Engineering
Languages : en
Pages : 943

Book Description
This conference proceedings brings together the work of researchers and practising engineers concerned with computational modelling of complex concrete, reinforced concrete and prestressed concrete structures in engineering practice. The subjects considered include computational mechanics of concrete and other cementitious materials, including masonry. Advanced discretisation methods and microstructural aspects within multi-field and multi-scale settings are discussed, as well as modelling formulations and constitutive modelling frameworks and novel experimental programmes. The conference also considered the need for reliable, high-quality analysis and design of concrete structures in regard to safety-critical structures, with a view to adopting these in codes of practice or recommendations. The book is of special interest to researchers in computational mechanics, and industry experts in complex nonlinear simulations of concrete structures.

Applied mechanics reviews

Applied mechanics reviews PDF Author:
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 400

Book Description


Concrete Library International

Concrete Library International PDF Author:
Publisher:
ISBN:
Category : Civil engineering
Languages : en
Pages : 722

Book Description


INIS Atomindex

INIS Atomindex PDF Author:
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 456

Book Description


Dissertation Abstracts International

Dissertation Abstracts International PDF Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 844

Book Description


Current Research in Britain

Current Research in Britain PDF Author:
Publisher:
ISBN:
Category : Engineering
Languages : en
Pages : 1386

Book Description