Algebraic and Geometric Methods in Nonlinear Control Theory PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Algebraic and Geometric Methods in Nonlinear Control Theory PDF full book. Access full book title Algebraic and Geometric Methods in Nonlinear Control Theory by M. Fliess. Download full books in PDF and EPUB format.

Algebraic and Geometric Methods in Nonlinear Control Theory

Algebraic and Geometric Methods in Nonlinear Control Theory PDF Author: M. Fliess
Publisher: Springer Science & Business Media
ISBN: 9400947062
Category : Mathematics
Languages : en
Pages : 630

Book Description
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point"of a Pin'. van GuIik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; ihe Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras ·are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.

Algebraic and Geometric Methods in Nonlinear Control Theory

Algebraic and Geometric Methods in Nonlinear Control Theory PDF Author: M. Fliess
Publisher: Springer Science & Business Media
ISBN: 9400947062
Category : Mathematics
Languages : en
Pages : 630

Book Description
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point"of a Pin'. van GuIik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; ihe Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras ·are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.

Algebraic and Differential Methods for Nonlinear Control Theory

Algebraic and Differential Methods for Nonlinear Control Theory PDF Author: Rafael Martínez-Guerra
Publisher: Springer
ISBN: 3030120252
Category : Technology & Engineering
Languages : en
Pages : 196

Book Description
This book is a short primer in engineering mathematics with a view on applications in nonlinear control theory. In particular, it introduces some elementary concepts of commutative algebra and algebraic geometry which offer a set of tools quite different from the traditional approaches to the subject matter. This text begins with the study of elementary set and map theory. Chapters 2 and 3 on group theory and rings, respectively, are included because of their important relation to linear algebra, the group of invertible linear maps (or matrices) and the ring of linear maps of a vector space. Homomorphisms and Ideals are dealt with as well at this stage. Chapter 4 is devoted to the theory of matrices and systems of linear equations. Chapter 5 gives some information on permutations, determinants and the inverse of a matrix. Chapter 6 tackles vector spaces over a field, Chapter 7 treats linear maps resp. linear transformations, and in addition the application in linear control theory of some abstract theorems such as the concept of a kernel, the image and dimension of vector spaces are illustrated. Chapter 8 considers the diagonalization of a matrix and their canonical forms. Chapter 9 provides a brief introduction to elementary methods for solving differential equations and, finally, in Chapter 10, nonlinear control theory is introduced from the point of view of differential algebra.

Nonlinear Control Systems

Nonlinear Control Systems PDF Author: Alberto Isidori
Publisher: Springer Science & Business Media
ISBN: 1846286158
Category : Technology & Engineering
Languages : en
Pages : 557

Book Description
The purpose of this book is to present a self-contained description of the fun damentals of the theory of nonlinear control systems, with special emphasis on the differential geometric approach. The book is intended as a graduate text as weil as a reference to scientists and engineers involved in the analysis and design of feedback systems. The first version of this book was written in 1983, while I was teach ing at the Department of Systems Science and Mathematics at Washington University in St. Louis. This new edition integrates my subsequent teaching experience gained at the University of Illinois in Urbana-Champaign in 1987, at the Carl-Cranz Gesellschaft in Oberpfaffenhofen in 1987, at the University of California in Berkeley in 1988. In addition to a major rearrangement of the last two Chapters of the first version, this new edition incorporates two additional Chapters at a more elementary level and an exposition of some relevant research findings which have occurred since 1985.

Cartanian Geometry, Nonlinear Waves, and Control Theory

Cartanian Geometry, Nonlinear Waves, and Control Theory PDF Author: Robert Hermann
Publisher:
ISBN: 9780915692279
Category : Mathematics
Languages : en
Pages : 526

Book Description


Algebraic Methods for Nonlinear Control Systems

Algebraic Methods for Nonlinear Control Systems PDF Author: Giuseppe Conte
Publisher: Springer Science & Business Media
ISBN: 184628595X
Category : Technology & Engineering
Languages : en
Pages : 183

Book Description
This is a self-contained introduction to algebraic control for nonlinear systems suitable for researchers and graduate students. It is the first book dealing with the linear-algebraic approach to nonlinear control systems in such a detailed and extensive fashion. It provides a complementary approach to the more traditional differential geometry and deals more easily with several important characteristics of nonlinear systems.

Nonlinear Control Systems II

Nonlinear Control Systems II PDF Author: Alberto Isidori
Publisher: Springer Science & Business Media
ISBN: 1447105494
Category : Technology & Engineering
Languages : en
Pages : 300

Book Description
This eagerly awaited follow-up to Nonlinear Control Systems incorporates recent advances in the design of feedback laws, for the purpose of globally stabilizing nonlinear systems via state or output feedback. The author is one of the most prominent researchers in the field.

Nonlinear Control Systems

Nonlinear Control Systems PDF Author: G. Conte
Publisher: Springer
ISBN: 9781447139676
Category : Computers
Languages : en
Pages : 168

Book Description
This book provides a unique and alternative approach to the study of nonlinear control systems, with applications. The approach presented is based on the use of algebraic methods which are intrinsically linear, rather than differential geometric methods, which are more commonly found in other reference works on the subject. This allows the exposition to remain simple from a mathematical point of view, and accessible for everyone who has a good understanding of linear control theory. The book is divided into the following three parts: Part 1 is devoted to mathematical preliminaries and to the development of tools and methods for system analysis. Part 2 is concerned with solving specific control problems, including disturbance decoupling, non-interactive control, model matching and feedback linearization problems. Part 3 introduces differential algebraic notions and discusses their applications to nonlinear control and system theory. With numerous examples used to illustrate theoretical results, this self-contained and comprehensive volume will be of interest to all those who have a good basic knowledge of standard linear control systems.

Geometric Methods in System Theory

Geometric Methods in System Theory PDF Author: D.Q. Mayne
Publisher: Springer Science & Business Media
ISBN: 9401026750
Category : Science
Languages : en
Pages : 322

Book Description
Geometric Methods in System Theory In automatic control there are a large number of applications of a fairly simple type for which the motion of the state variables is not free to evolve in a vector space but rather must satisfy some constraints. Examples are numerous; in a switched, lossless electrical network energy is conserved and the state evolves on an ellipsoid surface defined by x'Qx equals a constant; in the control of finite state, continuous time, Markov processes the state evolves on the set x'x = 1, xi ~ O. The control of rigid body motions and trajectory control leads to problems of this type. There has been under way now for some time an effort to build up enough control theory to enable one to treat these problems in a more or less routine way. It is important to emphasise that the ordinary vector space-linear theory often gives the wrong insight and thus should not be relied upon.

Algebraic Methods for Nonlinear Control Systems

Algebraic Methods for Nonlinear Control Systems PDF Author: Giuseppe Conte
Publisher: Springer
ISBN: 9781849966252
Category : Technology & Engineering
Languages : en
Pages : 178

Book Description
This is a self-contained introduction to algebraic control for nonlinear systems suitable for researchers and graduate students. It is the first book dealing with the linear-algebraic approach to nonlinear control systems in such a detailed and extensive fashion. It provides a complementary approach to the more traditional differential geometry and deals more easily with several important characteristics of nonlinear systems.

Methods of Algebraic Geometry in Control Theory: Part II

Methods of Algebraic Geometry in Control Theory: Part II PDF Author: Peter Falb
Publisher: Springer
ISBN: 3319965743
Category : Science
Languages : en
Pages : 390

Book Description
"An introduction to the ideas of algebraic geometry in the motivated context of system theory." This describes this two volume work which has been specifically written to serve the needs of researchers and students of systems, control, and applied mathematics. Without sacrificing mathematical rigor, the author makes the basic ideas of algebraic geometry accessible to engineers and applied scientists. The emphasis is on constructive methods and clarity rather than on abstraction. While familiarity with Part I is helpful, it is not essential, since a considerable amount of relevant material is included here. Part I, Scalar Linear Systems and Affine Algebraic Geometry, contains a clear presentation, with an applied flavor , of the core ideas in the algebra-geometric treatment of scalar linear system theory. Part II extends the theory to multivariable systems. After delineating limitations of the scalar theory through carefully chosen examples, the author introduces seven representations of a multivariable linear system and establishes the major results of the underlying theory. Of key importance is a clear, detailed analysis of the structure of the space of linear systems including the full set of equations defining the space. Key topics also covered are the Geometric Quotient Theorem and a highly geometric analysis of both state and output feedback. Prerequisites are the basics of linear algebra, some simple topological notions, the elementary properties of groups, rings, and fields, and a basic course in linear systems. Exercises, which are an integral part of the exposition throughout, combined with an index and extensive bibliography of related literature make this a valuable classroom tool or good self-study resource. The present, softcover reprint is designed to make this classic textbook available to a wider audience. "The exposition is extremely clear. In order to motivate the general theory, the author presents a number of examples of two or three input-, two-output systems in detail. I highly recommend this excellent book to all those interested in the interplay between control theory and algebraic geometry." —Publicationes Mathematicae, Debrecen "This book is the multivariable counterpart of Methods of Algebraic Geometry in Control Theory, Part I.... In the first volume the simpler single-input–single-output time-invariant linear systems were considered and the corresponding simpler affine algebraic geometry was used as the required prerequisite. Obviously, multivariable systems are more difficult and consequently the algebraic results are deeper and less transparent, but essential in the understanding of linear control theory.... Each chapter contains illustrative examples throughout and terminates with some exercises for further study." —Mathematical Reviews