Mathematics for Machine Learning PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Mathematics for Machine Learning PDF full book. Access full book title Mathematics for Machine Learning by Marc Peter Deisenroth. Download full books in PDF and EPUB format.

Mathematics for Machine Learning

Mathematics for Machine Learning PDF Author: Marc Peter Deisenroth
Publisher: Cambridge University Press
ISBN: 1108569323
Category : Computers
Languages : en
Pages : 392

Book Description
The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

Mathematics for Machine Learning

Mathematics for Machine Learning PDF Author: Marc Peter Deisenroth
Publisher: Cambridge University Press
ISBN: 1108569323
Category : Computers
Languages : en
Pages : 392

Book Description
The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

Research Directions in Computational Mechanics

Research Directions in Computational Mechanics PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309046483
Category : Technology & Engineering
Languages : en
Pages : 145

Book Description
Computational mechanics is a scientific discipline that marries physics, computers, and mathematics to emulate natural physical phenomena. It is a technology that allows scientists to study and predict the performance of various productsâ€"important for research and development in the industrialized world. This book describes current trends and future research directions in computational mechanics in areas where gaps exist in current knowledge and where major advances are crucial to continued technological developments in the United States.

Revolutionary Mathematics

Revolutionary Mathematics PDF Author: Justin Joque
Publisher: Verso Books
ISBN: 1788734009
Category : Political Science
Languages : en
Pages : 241

Book Description
Traces the revolution in statistics that gave rise to artificial intelligence and predictive algorithms refiguring contemporary capitalism. Our finances, politics, media, opportunities, information, shopping and knowledge production are mediated through algorithms and their statistical approaches to knowledge; increasingly, these methods form the organizational backbone of contemporary capitalism. Revolutionary Mathematics traces the revolution in statistics and probability that has quietly underwritten the explosion of machine learning, big data and predictive algorithms that now decide many aspects of our lives. Exploring shifts in the philosophical understanding of probability in the late twentieth century, Joque shows how this was not merely a technical change but a wholesale philosophical transformation in the production of knowledge and the extraction of value. This book provides a new and unique perspective on the dangers of allowing artificial intelligence and big data to manage society. It is essential reading for those who want to understand the underlying ideological and philosophical changes that have fueled the rise of algorithms and convinced so many to blindly trust their outputs, reshaping our current political and economic situation.

Artificial Intelligence in Mathematics

Artificial Intelligence in Mathematics PDF Author: Jeffrey Johnson
Publisher: Oxford University Press, USA
ISBN:
Category : Computers
Languages : en
Pages : 352

Book Description
This book offers a revelatory glimpse into the future--when science, social science, and social administration will be based on the complementary interplay between artificial intelligence, mathematics, and statistics. Comprised of contributions from a broad range of leading scientists and researchers, the book outlines how artificial intelligence supplies insights into the nature of complex problems, mathematics offers a rich language for presenting systems and methods for investigating them rigorously, and statistics provides the interface between theory and data from both observation and experiment. Students and researchers in applied mathematics, artificial intelligence, and statistics interested in the growing integration of computer technologies and modern mathematical breakthroughs will want to read this important new book.

Introduction to Artificial Intelligence

Introduction to Artificial Intelligence PDF Author: Philip C. Jackson
Publisher: Courier Dover Publications
ISBN: 0486832864
Category : Computers
Languages : en
Pages : 545

Book Description
Can computers think? Can they use reason to develop their own concepts, solve complex problems, understand our languages? This updated edition of a comprehensive survey includes extensive new text on "Artificial Intelligence in the 21st Century," introducing deep neural networks, conceptual graphs, languages of thought, mental models, metacognition, economic prospects, and research toward human-level AI. Ideal for both lay readers and students of computer science, the original text features abundant illustrations, diagrams, and photographs as well as challenging exercises. Lucid, easy-to-read discussions examine problem-solving methods and representations, game playing, automated understanding of natural languages, heuristic search theory, robot systems, heuristic scene analysis, predicate-calculus theorem proving, automatic programming, and many other topics.

Artificial Mathematical Intelligence

Artificial Mathematical Intelligence PDF Author: Danny A. J. Gómez Ramírez
Publisher: Springer Nature
ISBN: 3030502732
Category : Mathematics
Languages : en
Pages : 268

Book Description
This volume discusses the theoretical foundations of a new inter- and intra-disciplinary meta-research discipline, which can be succinctly called cognitive metamathematics, with the ultimate goal of achieving a global instance of concrete Artificial Mathematical Intelligence (AMI). In other words, AMI looks for the construction of an (ideal) global artificial agent being able to (co-)solve interactively formal problems with a conceptual mathematical description in a human-style way. It first gives formal guidelines from the philosophical, logical, meta-mathematical, cognitive, and computational points of view supporting the formal existence of such a global AMI framework, examining how much of current mathematics can be completely generated by an interactive computer program and how close we are to constructing a machine that would be able to simulate the way a modern working mathematician handles solvable mathematical conjectures from a conceptual point of view. The thesis that it is possible to meta-model the intellectual job of a working mathematician is heuristically supported by the computational theory of mind, which posits that the mind is in fact a computational system, and by the meta-fact that genuine mathematical proofs are, in principle, algorithmically verifiable, at least theoretically. The introduction to this volume provides then the grounding multifaceted principles of cognitive metamathematics, and, at the same time gives an overview of some of the most outstanding results in this direction, keeping in mind that the main focus is human-style proofs, and not simply formal verification. The first part of the book presents the new cognitive foundations of mathematics’ program dealing with the construction of formal refinements of seminal (meta-)mathematical notions and facts. The second develops positions and formalizations of a global taxonomy of classic and new cognitive abilities, and computational tools allowing for calculation of formal conceptual blends are described. In particular, a new cognitive characterization of the Church-Turing Thesis is presented. In the last part, classic and new results concerning the co-generation of a vast amount of old and new mathematical concepts and the key parts of several standard proofs in Hilbert-style deductive systems are shown as well, filling explicitly a well-known gap in the mechanization of mathematics concerning artificial conceptual generation.

Hands-On Mathematics for Deep Learning

Hands-On Mathematics for Deep Learning PDF Author: Jay Dawani
Publisher: Packt Publishing Ltd
ISBN: 183864184X
Category : Computers
Languages : en
Pages : 347

Book Description
A comprehensive guide to getting well-versed with the mathematical techniques for building modern deep learning architectures Key FeaturesUnderstand linear algebra, calculus, gradient algorithms, and other concepts essential for training deep neural networksLearn the mathematical concepts needed to understand how deep learning models functionUse deep learning for solving problems related to vision, image, text, and sequence applicationsBook Description Most programmers and data scientists struggle with mathematics, having either overlooked or forgotten core mathematical concepts. This book uses Python libraries to help you understand the math required to build deep learning (DL) models. You'll begin by learning about core mathematical and modern computational techniques used to design and implement DL algorithms. This book will cover essential topics, such as linear algebra, eigenvalues and eigenvectors, the singular value decomposition concept, and gradient algorithms, to help you understand how to train deep neural networks. Later chapters focus on important neural networks, such as the linear neural network and multilayer perceptrons, with a primary focus on helping you learn how each model works. As you advance, you will delve into the math used for regularization, multi-layered DL, forward propagation, optimization, and backpropagation techniques to understand what it takes to build full-fledged DL models. Finally, you’ll explore CNN, recurrent neural network (RNN), and GAN models and their application. By the end of this book, you'll have built a strong foundation in neural networks and DL mathematical concepts, which will help you to confidently research and build custom models in DL. What you will learnUnderstand the key mathematical concepts for building neural network modelsDiscover core multivariable calculus conceptsImprove the performance of deep learning models using optimization techniquesCover optimization algorithms, from basic stochastic gradient descent (SGD) to the advanced Adam optimizerUnderstand computational graphs and their importance in DLExplore the backpropagation algorithm to reduce output errorCover DL algorithms such as convolutional neural networks (CNNs), sequence models, and generative adversarial networks (GANs)Who this book is for This book is for data scientists, machine learning developers, aspiring deep learning developers, or anyone who wants to understand the foundation of deep learning by learning the math behind it. Working knowledge of the Python programming language and machine learning basics is required.

Mathematical Methods in Artificial Intelligence

Mathematical Methods in Artificial Intelligence PDF Author: Edward A. Bender
Publisher: Wiley-IEEE Computer Society Press
ISBN: 9780818672002
Category : Technology & Engineering
Languages : en
Pages : 0

Book Description
Mathematical Methods in Artificial Intelligence introduces the student to the important mathematical foundations and tools in AI and describes their applications to the design of AI algorithms. This useful text presents an introductory AI course based on the most important mathematics and its applications. It focuses on important topics that are proven useful in AI and involve the most broadly applicable mathematics. The book explores AI from three different viewpoints: goals, methods or tools, and achievements and failures. Its goals of reasoning, planning, learning, or language understanding and use are centered around the expert system idea. The tools of AI are presented in terms of what can be incorporated in the data structures. The book looks into the concepts and tools of limited structure, mathematical logic, logic-like representation, numerical information, and nonsymbolic structures. The text emphasizes the main mathematical tools for representing and manipulating knowledge symbolically. These are various forms of logic for qualitative knowledge, and probability and related concepts for quantitative knowledge. The main tools for manipulating knowledge nonsymbolically, as neural nets, are optimization methods and statistics. This material is covered in the text by topics such as trees and search, classical mathematical logic, and uncertainty and reasoning. A solutions diskette is available, please call for more information.

Introduction to Artificial Intelligence

Introduction to Artificial Intelligence PDF Author: Eugene Charniak
Publisher: Addison Wesley Publishing Company
ISBN: 9780201119459
Category : Computers
Languages : en
Pages : 724

Book Description


Behavioral Mathematics for Game AI

Behavioral Mathematics for Game AI PDF Author: Dave Mark
Publisher: Cengage Learning Ptr
ISBN: 9781584506843
Category : Computers
Languages : en
Pages : 459

Book Description
Human behavior is never an exact science, making the design and programming of artificial intelligence that seeks to replicate human behavior difficult. Usually, the answers cannot be found in sterile algorithms that are often the focus of artificial intelligence programming. However, by analyzing why people behave the way we do, we can break down the process into increasingly smaller components. We can model many of those individual components in the language of logic and mathematics and then reassemble them into larger, more involved decision-making processes. Drawing from classical game theory, "Behavioral Mathematics for Game AI" covers both the psychological foundations of human decisions and the mathematical modeling techniques that AI designers and programmers can use to replicate them. With examples from both real life and game situations, you'll explore topics such as utility, the fallacy of rational behavior, and the inconsistencies and contradictions that human behavior often exhibits. You'll examine various ways of using statistics, formulas, and algorithms to create believable simulations and to model these dynamic, realistic, and interesting behaviors in video games. Finally, you'll be introduced to a number of tools you can use in conjunction with standard AI algorithms to make it easier to utilize the mathematical models.