Basic Equations of Mass Transport Through a Membrane Layer PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Basic Equations of Mass Transport Through a Membrane Layer PDF full book. Access full book title Basic Equations of Mass Transport Through a Membrane Layer by Endre Nagy. Download full books in PDF and EPUB format.

Basic Equations of Mass Transport Through a Membrane Layer

Basic Equations of Mass Transport Through a Membrane Layer PDF Author: Endre Nagy
Publisher: Elsevier
ISBN: 0128137231
Category : Technology & Engineering
Languages : en
Pages : 594

Book Description
Basic Equations of Mass Transport Through a Membrane Layer, Second Edition, has been fully updated to deliver the latest research in the field. This volume covers the essentials of compound separation, product removal, concentration, and production in the chemical, biochemical, pharmaceutical, and food industries. It outlines the various membrane processes and their applications, offering a detailed mathematical description of mass transport and defining basic mass transport and concentration distribution expressions. Additionally, this book discusses the process parameters and application of the expressions developed for a variety of industrial applications. Comprehensive explanations of convective/diffusive mass transport are provided, both with and without polarization layers, that help predict and process performance and facilitate improvements to operation conditions and efficiency. Basic Equations of Mass Transport Through a Membrane Layer is an ideal resource for engineers and technologists in the chemical, biochemical, and pharmaceutical industries, as well as researchers, professors, and students in these areas at both an undergraduate and graduate level. Cites and analyzes mass transport equations developed for different membrane processes. Examines the effect of biochemical/chemical reactions in the presence of convective and diffusive flows in plane and cylindrical spaces. Defines the mass transfer rate for first- and zero-order reactions and analytical approaches are given for other-order reactions in closed mathematical forms. Analyzes the simultaneous convective and diffusive transports with same or different directions.

Basic Equations of Mass Transport Through a Membrane Layer

Basic Equations of Mass Transport Through a Membrane Layer PDF Author: Endre Nagy
Publisher: Elsevier
ISBN: 0128137231
Category : Technology & Engineering
Languages : en
Pages : 594

Book Description
Basic Equations of Mass Transport Through a Membrane Layer, Second Edition, has been fully updated to deliver the latest research in the field. This volume covers the essentials of compound separation, product removal, concentration, and production in the chemical, biochemical, pharmaceutical, and food industries. It outlines the various membrane processes and their applications, offering a detailed mathematical description of mass transport and defining basic mass transport and concentration distribution expressions. Additionally, this book discusses the process parameters and application of the expressions developed for a variety of industrial applications. Comprehensive explanations of convective/diffusive mass transport are provided, both with and without polarization layers, that help predict and process performance and facilitate improvements to operation conditions and efficiency. Basic Equations of Mass Transport Through a Membrane Layer is an ideal resource for engineers and technologists in the chemical, biochemical, and pharmaceutical industries, as well as researchers, professors, and students in these areas at both an undergraduate and graduate level. Cites and analyzes mass transport equations developed for different membrane processes. Examines the effect of biochemical/chemical reactions in the presence of convective and diffusive flows in plane and cylindrical spaces. Defines the mass transfer rate for first- and zero-order reactions and analytical approaches are given for other-order reactions in closed mathematical forms. Analyzes the simultaneous convective and diffusive transports with same or different directions.

Basic Equations of the Mass Transport Through a Membrane Layer

Basic Equations of the Mass Transport Through a Membrane Layer PDF Author: Endre Nagy
Publisher: Elsevier
ISBN: 0124160255
Category : Science
Languages : en
Pages : 342

Book Description
With a detailed analysis of the mass transport through membrane layers and its effect on different separation processes, this book provides a comprehensive look at the theoretical and practical aspects of membrane transport properties and functions. Basic equations for every membrane are provided to predict the mass transfer rate, the concentration distribution, the convective velocity, the separation efficiency, and the effect of chemical or biochemical reaction taking into account the heterogeneity of the membrane layer to help better understand the mechanisms of the separation processes. The reader will be able to describe membrane separation processes and the membrane reactors as well as choose the most suitable membrane structure for separation and for membrane reactor. Containing detailed discussion of the latest results in transport processes and separation processes, this book is essential for chemistry students and practitioners of chemical engineering and process engineering. Detailed survey of the theoretical and practical aspects of every membrane process with specific equations Practical examples discussed in detail with clear steps Will assist in planning and preparation of more efficient membrane structure separation

Mass Transport Phenomena

Mass Transport Phenomena PDF Author: Christie J. Geankoplis
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 522

Book Description
Molecular mass transport phenomena in fluids -- Transport phenomena and the basic equations of change -- Molecular mass transport phenomena in liquids -- Mass transport phenomena in solids -- Unsteady-state diffusion -- Mass transfer coefficients in laminar and turbulent flow -- Interphase mass transport -- Continuous two-phase mass transport processes -- Mass transport in state processes -- Analog computer methods.

Transport Mechanisms in Membrane Separation Processes

Transport Mechanisms in Membrane Separation Processes PDF Author: J.G.A. Bitter
Publisher: Springer Science & Business Media
ISBN: 1461536820
Category : Science
Languages : en
Pages : 219

Book Description
The present book contains a comparison of existing theoretical models developed in order to describe membrane separation processes. In general, the permeation equations resulting from these models give inaccurate predictions of the mutual effects of the permeants involved, due to the simplifications adopted in their derivation. It is concluded that an optimum description of transport phenomena in tight (diffusion-type) membranes is achieved with the "solution-diffusion" model. According to this model each component of a fluid mixture to be separated dissolves in the membrane and passes through by diffusion in response to its gradient in the chemical potential. A modified Flory-Huggins equation has been derived to calculate the solubility of the permeants in the membrane material. Contrary to the original Flory-Huggins equation, the modified equation accounts for the large effect on solubility of crystallinity and elastic strain of the polymer chains by swelling. The equilibrium sorption of liquids computed with this equation was found to be in good agreement with experimental results. Also, the sorption of gases in both rubbery and glassy polymers could be described quan titatively with the modified Flory-Huggins equation without any need of the arbitrary Langmuir term, as required in the conventional "dual-mode" sorption model. Furthermore, fewer parameters are required than with the at least identical accuracy.

Biomedical Mass Transport and Chemical Reaction

Biomedical Mass Transport and Chemical Reaction PDF Author: James S. Ultman
Publisher: John Wiley & Sons
ISBN: 1119184657
Category : Technology & Engineering
Languages : en
Pages : 656

Book Description
Teaches the fundamentals of mass transport with a unique approach emphasizing engineering principles in a biomedical environment Includes a basic review of physiology, chemical thermodynamics, chemical kinetics, mass transport, fluid mechanics and relevant mathematical methods Teaches engineering principles and mathematical modelling useful in the broad range of problems that students will encounter in their academic programs as well as later on in their careers Illustrates principles with examples taken from physiology and medicine or with design problems involving biomedical devices Stresses the simplification of problem formulations based on key geometric and functional features that permit practical analyses of biomedical applications Offers a web site of homework problems associated with each chapter and solutions available to instructors Homework problems related to each chapter are available from a supplementary website (

Osmotically Driven Membrane Processes

Osmotically Driven Membrane Processes PDF Author: Muharrem Ince
Publisher: BoD – Books on Demand
ISBN: 1839689110
Category : Technology & Engineering
Languages : en
Pages : 136

Book Description
Osmotically Driven Membrane Processes provides an overview of membrane systems and separation processes, recent trends in membranes and membrane processes, and advancements in osmotically driven membrane systems. It focuses on recent advances in monitoring and controlling wastewater using membrane technologies. It explains and clarifies important research studies as well as discusses advancements in the field of organic-inorganic pollution.

The Mathematics of Diffusion

The Mathematics of Diffusion PDF Author: John Crank
Publisher: Oxford University Press
ISBN: 9780198534112
Category : Mathematics
Languages : en
Pages : 428

Book Description
Though it incorporates much new material, this new edition preserves the general character of the book in providing a collection of solutions of the equations of diffusion and describing how these solutions may be obtained.

Industrial Membrane Separation Technology

Industrial Membrane Separation Technology PDF Author: K. Scott
Publisher: Springer Science & Business Media
ISBN: 9401106274
Category : Science
Languages : en
Pages : 317

Book Description
Membrane science and technology is an expanding field and has become a prominent part of many activities within the process industries. It is relatively easy to identify the success stories of membranes such as desali nation and microfiltration and to refer to others as developing areas. This, however, does not do justice to the wide field of separations in which membranes are used. No other 'single' process offers the same potential and versatility as that of membranes. The word separation classically conjures up a model of removing one component or species from a second component, for example a mass transfer process such as distillation. In the field of synthetic membranes, the terminology 'separation' is used in a wider context. A range of separations of the chemical/mass transfer type have developed around the use of membranes including distillation, extraction, absorption, adsorption and stripping, as well as separations of the physical type such as filtration. Synthetic membranes are an integral part of devices for analysis, energy generation and reactors (cells) in the electrochemical industry.

Biofluid Dynamics

Biofluid Dynamics PDF Author: Clement Kleinstreuer
Publisher: CRC Press
ISBN: 1420003976
Category : Medical
Languages : en
Pages : 528

Book Description
Requiring only an introductory background in continuum mechanics, including thermodynamics, fluid mechanics, and solid mechanics, Biofluid Dynamics: Principles and Selected Applications contains review, methodology, and application chapters to build a solid understanding of medical implants and devices. For additional assistance, it includes a glossary of biological terms, many figures illustrating theoretical concepts, numerous solved sample problems, and mathematical appendices. The text is geared toward seniors and first-year graduate students in engineering and physics as well as professionals in medicine and medical implant/device industries. It can be used as a primary selection for a comprehensive course or for a two-course sequence. The book has two main parts: theory, comprising the first two chapters; and applications, constituting the remainder of the book. Specifically, the author reviews the fundamentals of physical and related biological transport phenomena, such as mass, momentum, and heat transfer in biomedical systems, and highlights complementary topics such as two-phase flow, biomechanics, and fluid-structure interaction. Two appendices summarize needed elements of engineering mathematics and CFD software applications, and these are also found in the fifth chapter. The application part, in form of project analyses, focuses on the cardiovascular system with common arterial diseases, organ systems, targeted drug delivery, and stent-graft implants. Armed with Biofluid Dynamics, students will be ready to solve basic biofluids-related problems, gain new physical insight, and analyze biofluid dynamics aspects of biomedical systems.

Mass Transport in Solids and Fluids

Mass Transport in Solids and Fluids PDF Author: David S. Wilkinson
Publisher: Cambridge University Press
ISBN: 9780521624947
Category : Science
Languages : en
Pages : 292

Book Description
The field of matter transport is central to understanding the processing of materials and their subsequent mechanical properties. While thermodynamics determines the final state of a material system, it is the kinetics of mass transport that governs how it gets there. This book, first published in 2000, gives a solid grounding in the principles of matter transport and their application to a range of engineering problems. The author develops a unified treatment of mass transport applicable to both solids and liquids. Traditionally matter transport in fluids is considered as an extension of heat transfer and can appear to have little relationship to diffusion in solids. This unified approach clearly makes the connection between these important fields. This book is aimed at advanced undergraduate and beginning graduate students of materials science and engineering and related disciplines. It contains numerous worked examples and unsolved problems. The material can be covered in a one semester course.