Differential and Integral Equations: Boundary Value Problems and Adjoints PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Differential and Integral Equations: Boundary Value Problems and Adjoints PDF full book. Access full book title Differential and Integral Equations: Boundary Value Problems and Adjoints by S. Schwabik. Download full books in PDF and EPUB format.

Differential and Integral Equations: Boundary Value Problems and Adjoints

Differential and Integral Equations: Boundary Value Problems and Adjoints PDF Author: S. Schwabik
Publisher: Springer
ISBN: 9027708029
Category : Mathematics
Languages : en
Pages : 252

Book Description


Differential and Integral Equations: Boundary Value Problems and Adjoints

Differential and Integral Equations: Boundary Value Problems and Adjoints PDF Author: S. Schwabik
Publisher: Springer
ISBN: 9027708029
Category : Mathematics
Languages : en
Pages : 252

Book Description


Techniques of Functional Analysis for Differential and Integral Equations

Techniques of Functional Analysis for Differential and Integral Equations PDF Author: Paul Sacks
Publisher: Academic Press
ISBN: 0128114576
Category : Mathematics
Languages : en
Pages : 322

Book Description
Techniques of Functional Analysis for Differential and Integral Equations describes a variety of powerful and modern tools from mathematical analysis, for graduate study and further research in ordinary differential equations, integral equations and partial differential equations. Knowledge of these techniques is particularly useful as preparation for graduate courses and PhD research in differential equations and numerical analysis, and more specialized topics such as fluid dynamics and control theory. Striking a balance between mathematical depth and accessibility, proofs involving more technical aspects of measure and integration theory are avoided, but clear statements and precise alternative references are given . The work provides many examples and exercises drawn from the literature. - Provides an introduction to mathematical techniques widely used in applied mathematics and needed for advanced research in ordinary and partial differential equations, integral equations, numerical analysis, fluid dynamics and other areas - Establishes the advanced background needed for sophisticated literature review and research in differential equations and integral equations - Suitable for use as a textbook for a two semester graduate level course for M.S. and Ph.D. students in Mathematics and Applied Mathematics

Differential and Integral Equations

Differential and Integral Equations PDF Author: Štefan Schwabik
Publisher:
ISBN:
Category : Boundary value problems
Languages : en
Pages : 248

Book Description


Strongly Elliptic Systems and Boundary Integral Equations

Strongly Elliptic Systems and Boundary Integral Equations PDF Author: William Charles Hector McLean
Publisher: Cambridge University Press
ISBN: 9780521663755
Category : Mathematics
Languages : en
Pages : 376

Book Description
This 2000 book provided the first detailed exposition of the mathematical theory of boundary integral equations of the first kind on non-smooth domains.

Integral Equations and Boundary Value Problems

Integral Equations and Boundary Value Problems PDF Author: M.D.Raisinghania
Publisher: S. Chand Publishing
ISBN: 8121928052
Category : Science
Languages : en
Pages : 519

Book Description
Strictly according to the latest syllabus of U.G.C.for Degree level students and for various engineering and professional examinations such as GATE, C.S.I.R NET/JRFand SLET etc. For M.A./M.Sc (Mathematics) also.

Integral Equations: A Practical Treatment, from Spectral Theory to Applications

Integral Equations: A Practical Treatment, from Spectral Theory to Applications PDF Author: David Porter
Publisher: Cambridge University Press
ISBN: 9780521337427
Category : Mathematics
Languages : en
Pages : 388

Book Description
This book gives a rigorous and practical treatment of integral equations. These are significant because they occur in many problems in mathematics, physics and engineering and they offer a powerful (sometimes the only) technique for solving these problems. The book aims to tackle the solution of integral equations using a blend of abstract 'structural' results and more direct, down-to-earth mathematics. The interplay between these two approaches is a central feature of the text and it allows a thorough account to be given of many of the types of integral equation which arise in application areas. Since it is not always possible to find explicit solutions of the problems posed, much attention is devoted to obtaining qualitative information and approximations to the solutions, with the associated error estimates. This treatment is intended for final year mathematics undergraduates, postgraduates and research workers in application areas such as numerical analysis and fluid mechanics.

Boundary Value Problems for Analytic Functions

Boundary Value Problems for Analytic Functions PDF Author: Jian-Ke Lu
Publisher: World Scientific
ISBN: 9789810210205
Category : Mathematics
Languages : en
Pages : 484

Book Description
This book deals with boundary value problems for analytic functions with applications to singular integral equations. New and simpler proofs of certain classical results such as the Plemelj formula, the Privalov theorem and the Poincar‚-Bertrand formula are given. Nearly one third of this book contains the author's original works, most of which have not been published in English before and, hence, were previously unknown to most readers in the world.It consists of 7 chapters together with an appendix: Chapter I describes the basic knowledge on Cauchy-type integrals and Cauchy principal value integrals; Chapters II and III study, respectively, fundamental boundary value problems and their applications to singular integral equations for closed contours; Chapters IV and V discuss the same problems for curves with nodes (including open arcs); Chaper VI deals with similar problems for systems of functions; Chapter VII is concerned with some miscellaneous problems and the Appendix contains some basic results on Fredholm integral equations. In most sections, there are carefully selected sets of exercises, some of which supplement the text of the sections; answers/hints are also given for some of these exercises.For graduate students or seniors, all the 7 chapters can be used for a full year course, while the first 3 chapters may be used for a one-semester course.

Linear Integral Equations

Linear Integral Equations PDF Author: Ram P. Kanwal
Publisher: Springer Science & Business Media
ISBN: 1461207657
Category : Mathematics
Languages : en
Pages : 327

Book Description
This second edition of Linear Integral Equations continues the emphasis that the first edition placed on applications. Indeed, many more examples have been added throughout the text. Significant new material has been added in Chapters 6 and 8. For instance, in Chapter 8 we have included the solutions of the Cauchy type integral equations on the real line. Also, there is a section on integral equations with a logarithmic kernel. The bibliography at the end of the book has been exteded and brought up to date. I wish to thank Professor B.K. Sachdeva who has checked the revised man uscript and has suggested many improvements. Last but not least, I am grateful to the editor and staff of Birkhauser for inviting me to prepare this new edition and for their support in preparing it for publication. RamP Kanwal CHAYfERl Introduction 1.1. Definition An integral equation is an equation in which an unknown function appears under one or more integral signs Naturally, in such an equation there can occur other terms as well. For example, for a ~ s ~ b; a :( t :( b, the equations (1.1.1) f(s) = ib K(s, t)g(t)dt, g(s) = f(s) + ib K(s, t)g(t)dt, (1.1.2) g(s) = ib K(s, t)[g(t)fdt, (1.1.3) where the function g(s) is the unknown function and all the other functions are known, are integral equations. These functions may be complex-valued functions of the real variables s and t.

Non-Self-Adjoint Boundary Eigenvalue Problems

Non-Self-Adjoint Boundary Eigenvalue Problems PDF Author: R. Mennicken
Publisher: Elsevier
ISBN: 0080537731
Category : Mathematics
Languages : en
Pages : 519

Book Description
This monograph provides a comprehensive treatment of expansion theorems for regular systems of first order differential equations and n-th order ordinary differential equations.In 10 chapters and one appendix, it provides a comprehensive treatment from abstract foundations to applications in physics and engineering. The focus is on non-self-adjoint problems. Bounded operators are associated to these problems, and Chapter 1 provides an in depth investigation of eigenfunctions and associated functions for bounded Fredholm valued operators in Banach spaces. Since every n-th order differential equation is equivalentto a first order system, the main techniques are developed for systems. Asymptotic fundamentalsystems are derived for a large class of systems of differential equations. Together with boundaryconditions, which may depend polynomially on the eigenvalue parameter, this leads to the definition of Birkhoff and Stone regular eigenvalue problems. An effort is made to make the conditions relatively easy verifiable; this is illustrated with several applications in chapter 10.The contour integral method and estimates of the resolvent are used to prove expansion theorems.For Stone regular problems, not all functions are expandable, and again relatively easy verifiableconditions are given, in terms of auxiliary boundary conditions, for functions to be expandable.Chapter 10 deals exclusively with applications; in nine sections, various concrete problems such asthe Orr-Sommerfeld equation, control of multiple beams, and an example from meteorology are investigated.Key features:• Expansion Theorems for Ordinary Differential Equations • Discusses Applications to Problems from Physics and Engineering • Thorough Investigation of Asymptotic Fundamental Matrices and Systems • Provides a Comprehensive Treatment • Uses the Contour Integral Method • Represents the Problems as Bounded Operators • Investigates Canonical Systems of Eigen- and Associated Vectors for Operator Functions

A Course of Higher Mathematics

A Course of Higher Mathematics PDF Author: Vladimir Ivanovich Smirnov
Publisher:
ISBN:
Category : Mathematical analysis
Languages : en
Pages : 1050

Book Description