Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Guide to Discrete Mathematics PDF full book. Access full book title Guide to Discrete Mathematics by Gerard O'Regan. Download full books in PDF and EPUB format.
Author: Gerard O'Regan Publisher: Springer ISBN: 3319445618 Category : Computers Languages : en Pages : 378
Book Description
This stimulating textbook presents a broad and accessible guide to the fundamentals of discrete mathematics, highlighting how the techniques may be applied to various exciting areas in computing. The text is designed to motivate and inspire the reader, encouraging further study in this important skill. Features: provides an introduction to the building blocks of discrete mathematics, including sets, relations and functions; describes the basics of number theory, the techniques of induction and recursion, and the applications of mathematical sequences, series, permutations, and combinations; presents the essentials of algebra; explains the fundamentals of automata theory, matrices, graph theory, cryptography, coding theory, language theory, and the concepts of computability and decidability; reviews the history of logic, discussing propositional and predicate logic, as well as advanced topics; examines the field of software engineering, describing formal methods; investigates probability and statistics.
Author: Gerard O'Regan Publisher: Springer ISBN: 3319445618 Category : Computers Languages : en Pages : 378
Book Description
This stimulating textbook presents a broad and accessible guide to the fundamentals of discrete mathematics, highlighting how the techniques may be applied to various exciting areas in computing. The text is designed to motivate and inspire the reader, encouraging further study in this important skill. Features: provides an introduction to the building blocks of discrete mathematics, including sets, relations and functions; describes the basics of number theory, the techniques of induction and recursion, and the applications of mathematical sequences, series, permutations, and combinations; presents the essentials of algebra; explains the fundamentals of automata theory, matrices, graph theory, cryptography, coding theory, language theory, and the concepts of computability and decidability; reviews the history of logic, discussing propositional and predicate logic, as well as advanced topics; examines the field of software engineering, describing formal methods; investigates probability and statistics.
Author: W.D. Wallis Publisher: Springer Science & Business Media ISBN: 1475738269 Category : Mathematics Languages : en Pages : 367
Book Description
This introduction to discrete mathematics is aimed at freshmen and sophomores in mathematics and computer science. It begins with a survey of number systems and elementary set theory before moving on to treat data structures, counting, probability, relations and functions, graph theory, matrices, number theory and cryptography. The end of each section contains problem sets with selected solutions, and good examples occur throughout the text.
Author: W. D. Wallis Publisher: Springer Science & Business Media ISBN: 0817642692 Category : Combinatorics Languages : en Pages : 386
Book Description
This introduction to discrete mathematics is aimed primarily at undergraduates in mathematics and computer science at the freshmen and sophomore levels. The text has a distinctly applied orientation and begins with a survey of number systems and elementary set theory. Included are discussions of scientific notation and the representation of numbers in computers. Lists are presented as an example of data structures. An introduction to counting includes the Binomial Theorem and mathematical induction, which serves as a starting point for a brief study of recursion. The basics of probability theory are then covered.Graph study is discussed, including Euler and Hamilton cycles and trees. This is a vehicle for some easy proofs, as well as serving as another example of a data structure. Matrices and vectors are then defined. The book concludes with an introduction to cryptography, including the RSA cryptosystem, together with the necessary elementary number theory, e.g., Euclidean algorithm, Fermat's Little Theorem.Good examples occur throughout. At the end of every section there are two problem sets of equal difficulty. However, solutions are only given to the first set. References and index conclude the work.A math course at the college level is required to handle this text. College algebra would be the most helpful.
Author: Kenneth H. Rosen Publisher: McGraw-Hill College ISBN: 9780072474770 Category : Mathematics Languages : en Pages : 502
Book Description
This text is designed for students preparing for future coursework in areas such as math, computer science, and engineering. Discrete Mathematics and Its Applications has become a best-seller largely due to how effectively it addresses the main portion of the discrete market, which is typically characterized as the mid to upper level in rigor. The strength of Rosen's approach has been the effective balance of theory with relevant applications, as well as the overall comprehensive nature of the topic coverage.
Author: Kenneth H. Rosen Publisher: McGraw-Hill Companies ISBN: 9780070539662 Category : Computer science Languages : en Pages : 372
Book Description
This text provides a balanced survey of major sub-fields within discrete mathematics. It demonstrates the utility of discrete mathematics in the solutions of real-world problems in diverse areas such as zoology, linguistics and business. Over 200 new problems have been added to this third edition.
Author: Cordelia Hall Publisher: Springer Science & Business Media ISBN: 1447136578 Category : Mathematics Languages : en Pages : 339
Book Description
Several areas of mathematics find application throughout computer science, and all students of computer science need a practical working understanding of them. These core subjects are centred on logic, sets, recursion, induction, relations and functions. The material is often called discrete mathematics, to distinguish it from the traditional topics of continuous mathematics such as integration and differential equations. The central theme of this book is the connection between computing and discrete mathematics. This connection is useful in both directions: • Mathematics is used in many branches of computer science, in applica tions including program specification, datastructures,design and analysis of algorithms, database systems, hardware design, reasoning about the correctness of implementations, and much more; • Computers can help to make the mathematics easier to learn and use, by making mathematical terms executable, making abstract concepts more concrete, and through the use of software tools such as proof checkers. These connections are emphasised throughout the book. Software tools (see Appendix A) enable the computer to serve as a calculator, but instead of just doing arithmetic and trigonometric functions, it will be used to calculate with sets, relations, functions, predicates and inferences. There are also special software tools, for example a proof checker for logical proofs using natural deduction.
Author: Sergei Kurgalin Publisher: Springer Nature ISBN: 3030422216 Category : Computers Languages : en Pages : 507
Book Description
This practically-focused study guide introduces the fundamentals of discrete mathematics through an extensive set of classroom-tested problems. Each chapter presents a concise introduction to the relevant theory, followed by a detailed account of common challenges and methods for overcoming these. The reader is then encouraged to practice solving such problems for themselves, by tackling a varied selection of questions and assignments of different levels of complexity. This updated second edition now covers the design and analysis of algorithms using Python, and features more than 50 new problems, complete with solutions. Topics and features: provides a substantial collection of problems and examples of varying levels of difficulty, suitable for both laboratory practical training and self-study; offers detailed solutions to each problem, applying commonly-used methods and computational schemes; introduces the fundamentals of mathematical logic, the theory of algorithms, Boolean algebra, graph theory, sets, relations, functions, and combinatorics; presents more advanced material on the design and analysis of algorithms, including Turing machines, asymptotic analysis, and parallel algorithms; includes reference lists of trigonometric and finite summation formulae in an appendix, together with basic rules for differential and integral calculus. This hands-on workbook is an invaluable resource for undergraduate students of computer science, informatics, and electronic engineering. Suitable for use in a one- or two-semester course on discrete mathematics, the text emphasizes the skills required to develop and implement an algorithm in a specific programming language.
Author: K. Erciyes Publisher: Springer Nature ISBN: 3030611159 Category : Computers Languages : en Pages : 345
Book Description
This textbook can serve as a comprehensive manual of discrete mathematics and graph theory for non-Computer Science majors; as a reference and study aid for professionals and researchers who have not taken any discrete math course before. It can also be used as a reference book for a course on Discrete Mathematics in Computer Science or Mathematics curricula. The study of discrete mathematics is one of the first courses on curricula in various disciplines such as Computer Science, Mathematics and Engineering education practices. Graphs are key data structures used to represent networks, chemical structures, games etc. and are increasingly used more in various applications such as bioinformatics and the Internet. Graph theory has gone through an unprecedented growth in the last few decades both in terms of theory and implementations; hence it deserves a thorough treatment which is not adequately found in any other contemporary books on discrete mathematics, whereas about 40% of this textbook is devoted to graph theory. The text follows an algorithmic approach for discrete mathematics and graph problems where applicable, to reinforce learning and to show how to implement the concepts in real-world applications.