The Physical and Mathematical Foundations of the Theory of Relativity PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download The Physical and Mathematical Foundations of the Theory of Relativity PDF full book. Access full book title The Physical and Mathematical Foundations of the Theory of Relativity by Antonio Romano. Download full books in PDF and EPUB format.

The Physical and Mathematical Foundations of the Theory of Relativity

The Physical and Mathematical Foundations of the Theory of Relativity PDF Author: Antonio Romano
Publisher: Springer Nature
ISBN: 3030272370
Category : Science
Languages : en
Pages : 496

Book Description
This unique textbook offers a mathematically rigorous presentation of the theory of relativity, emphasizing the need for a critical analysis of the foundations of general relativity in order to best study the theory and its implications. The transitions from classical mechanics to special relativity and then to general relativity are explored in detail as well, helping readers to gain a more profound and nuanced understanding of the theory as a whole. After reviewing the fundamentals of differential geometry and classical mechanics, the text introduces special relativity, first using the physical approach proposed by Einstein and then via Minkowski’s mathematical model. The authors then address the relativistic thermodynamics of continua and electromagnetic fields in matter – topics which are normally covered only very briefly in other treatments – in the next two chapters. The text then turns to a discussion of general relativity by means of the authors’ unique critical approach, underlining the difficulty of recognizing the physical meaning of some statements, such as the physical meaning of coordinates and the derivation of physical quantities from those of space-time. Chapters in this section cover the model of space-time proposed by Schwarzschild; black holes; the Friedman equations and the different cosmological models they describe; and the Fermi-Walker derivative. Well-suited for graduate students in physics and mathematics who have a strong foundation in real analysis, classical mechanics, and general physics, this textbook is appropriate for a variety of graduate-level courses that cover topics in relativity. Additionally, it will interest physicists and other researchers who wish to further study the subtleties of these theories and understand the contemporary scholarly discussions surrounding them.

The Physical and Mathematical Foundations of the Theory of Relativity

The Physical and Mathematical Foundations of the Theory of Relativity PDF Author: Antonio Romano
Publisher: Springer Nature
ISBN: 3030272370
Category : Science
Languages : en
Pages : 496

Book Description
This unique textbook offers a mathematically rigorous presentation of the theory of relativity, emphasizing the need for a critical analysis of the foundations of general relativity in order to best study the theory and its implications. The transitions from classical mechanics to special relativity and then to general relativity are explored in detail as well, helping readers to gain a more profound and nuanced understanding of the theory as a whole. After reviewing the fundamentals of differential geometry and classical mechanics, the text introduces special relativity, first using the physical approach proposed by Einstein and then via Minkowski’s mathematical model. The authors then address the relativistic thermodynamics of continua and electromagnetic fields in matter – topics which are normally covered only very briefly in other treatments – in the next two chapters. The text then turns to a discussion of general relativity by means of the authors’ unique critical approach, underlining the difficulty of recognizing the physical meaning of some statements, such as the physical meaning of coordinates and the derivation of physical quantities from those of space-time. Chapters in this section cover the model of space-time proposed by Schwarzschild; black holes; the Friedman equations and the different cosmological models they describe; and the Fermi-Walker derivative. Well-suited for graduate students in physics and mathematics who have a strong foundation in real analysis, classical mechanics, and general physics, this textbook is appropriate for a variety of graduate-level courses that cover topics in relativity. Additionally, it will interest physicists and other researchers who wish to further study the subtleties of these theories and understand the contemporary scholarly discussions surrounding them.

Foundations of General Relativity

Foundations of General Relativity PDF Author: Klaas Landsman
Publisher: Radboud University Press
ISBN: 9083178927
Category : Science
Languages : en
Pages : 394

Book Description
This book, dedicated to Roger Penrose, is a second, mathematically oriented course in general relativity. It contains extensive references and occasional excursions in the history and philosophy of gravity, including a relatively lengthy historical introduction. The book is intended for all students of general relativity of any age and orientation who have a background including at least first courses in special and general relativity, differential geometry, and topology. The material is developed in such a way that through the last two chapters the reader may acquire a taste of the modern mathematical study of black holes initiated by Penrose, Hawking, and others, as further influenced by the initial-value or PDE approach to general relativity. Successful readers might be able to begin reading research papers on black holes, especially in mathematical physics and in the philosophy of physics. The chapters are: Historical introduction, General differential geometry, Metric differential geometry, Curvature, Geodesics and causal structure, The singularity theorems of Hawking and Penrose, The Einstein equations, The 3+1 split of space-time, Black holes I: Exact solutions, and Black holes II: General theory. These are followed by two appendices containing background on Lie groups, Lie algebras, & constant curvature, and on Formal PDE theory.

Mathematical Foundation of the General Theory of Relativity

Mathematical Foundation of the General Theory of Relativity PDF Author: Albert Einstein
Publisher: Blurb
ISBN: 9781006727146
Category :
Languages : en
Pages : 96

Book Description
The theory which is sketched in the following pages forms the most wide-going generalization conceivable of what is at present known as "the theory of Relativity;" this latter theory I differentiate from the former "Special Relativity theory," and suppose it to be known. The generalization of the Relativity theory has been made much easier through the form given to the special Relativity theory by Minkowski, which mathematician was the first to recognize clearly the formal equivalence of the space like and time-like co-ordinates, and who made use of it in the building up of the theory. The mathematical apparatus useful for the general relativity theory, lay already complete in the "Absolute Differential Calculus", which were based on the researches of GAUSS, RIEMANN and CHRISTOFFEL on the non-Euclidean manifold, and which have been shaped into a system by RICCI and LEVI-CIVITA, and already applied to the problems of theoretical physics. I have in part B of this communication developed in the simplest and clearest manner, all the supposed mathematical auxiliaries, not known to Physicists, which will be useful for our purpose, so that, a study of the mathematical literature is not necessary for an understanding of this paper. Finally in this place I thank my friend GROSSMANN, by whose help I was not only spared the study of the mathematical literature pertinent to this subject, but who also aided me in the researches on the field equations of gravitation.

The General Theory of Relativity

The General Theory of Relativity PDF Author: Farook Rahaman
Publisher: Cambridge University Press
ISBN: 1009032372
Category : Science
Languages : en
Pages : 428

Book Description
The book aims to expound the general theory of relativity with a mathematical point of view. Catering to the needs of postgraduate students and researchers in the field of astrophysics and mathematical physics, it offers the readers a comprehensive understanding of the advanced topics of the subject matter. It specifically discusses the mathematical foundation of tensor calculus, gives a background of geodesics, Einstein's field equations, linearised gravity, spacetime of spherically symmetric distribution of matter and black holes, and particle and photon orbits in spacetime. Apart from the formulation of general relativity, Lie derivatives and its applications, and causality of spacetime are also discussed in detail. Certain preliminary concepts of extrinsic curvature, Lagrangian formalism of general theory of relativity and 3 + 1 decomposition of space-time are covered and are provided in the book as appendices.

Topics in the Foundations of General Relativity and Newtonian Gravitation Theory

Topics in the Foundations of General Relativity and Newtonian Gravitation Theory PDF Author: David B. Malament
Publisher: University of Chicago Press
ISBN: 0226502473
Category : Science
Languages : en
Pages : 363

Book Description
In Topics in the Foundations of General Relativity and Newtonian Gravitation Theory, David B. Malament presents the basic logical-mathematical structure of general relativity and considers a number of special topics concerning the foundations of general relativity and its relation to Newtonian gravitation theory. These special topics include the geometrized formulation of Newtonian theory (also known as Newton-Cartan theory), the concept of rotation in general relativity, and Gödel spacetime. One of the highlights of the book is a no-go theorem that can be understood to show that there is no criterion of orbital rotation in general relativity that fully answers to our classical intuitions. Topics is intended for both students and researchers in mathematical physics and philosophy of science.

The General Theory of Relativity

The General Theory of Relativity PDF Author: Anadijiban Das
Publisher: Springer Science & Business Media
ISBN: 1461436583
Category : Science
Languages : en
Pages : 694

Book Description
The General Theory of Relativity: A Mathematical Exposition will serve readers as a modern mathematical introduction to the general theory of relativity. Throughout the book, examples, worked-out problems, and exercises (with hints and solutions) are furnished. Topics in this book include, but are not limited to: tensor analysis the special theory of relativity the general theory of relativity and Einstein’s field equations spherically symmetric solutions and experimental confirmations static and stationary space-time domains black holes cosmological models algebraic classifications and the Newman-Penrose equations the coupled Einstein-Maxwell-Klein-Gordon equations appendices covering mathematical supplements and special topics Mathematical rigor, yet very clear presentation of the topics make this book a unique text for both university students and research scholars. Anadijiban Das has taught courses on Relativity Theory at The University College of Dublin, Ireland, Jadavpur University, India, Carnegie-Mellon University, USA, and Simon Fraser University, Canada. His major areas of research include, among diverse topics, the mathematical aspects of general relativity theory. Andrew DeBenedictis has taught courses in Theoretical Physics at Simon Fraser University, Canada, and is also a member of The Pacific Institute for the Mathematical Sciences. His research interests include quantum gravity, classical gravity, and semi-classical gravity.

FUNDAMENTALS OF SPECIAL AND GENERAL RELATIVITY, Revised Edition

FUNDAMENTALS OF SPECIAL AND GENERAL RELATIVITY, Revised Edition PDF Author: KRORI, K. D.
Publisher: PHI Learning Pvt. Ltd.
ISBN: 9388028686
Category : Science
Languages : en
Pages : 332

Book Description
Relativity, apart from quantum mechanics, is the greatest wonder in science, unfolded single-handedly in the 20th century by Albert Einstein. The scientist developed general relativity as a logical sequel to special relativity. This comprehensive book presents explication of the conceptual evolution and mathematical derivations of the theories of special and general relativity. The book follows an Einsteinian approach while explaining the concepts and the theories of relativity. Divided into 14 chapters, the revised edition of the book covers elementary concepts of Special relativity, as well as the advanced studies on General relativity. The recent theories like Kerr geometry, Sagnac effect, Vaidya geometry, Raychaudhuri equation and Gravitation physics vis-à-vis Quantum physics are presented in easy-to-understand language and simple style. In addition to it, the book gives an in-depth analysis on the applications of advanced theories like Vaidya-Krori-Barua solution from author’s own research works. Apart from that, the book also discusses some of the isotropic and anisotropic cosmological models, in detail. The salient topics discussed in the revised edition of the book are extrinsic curvature, detection of gravitational waves, early universe, evolution of a dead star into a white dwarf or a neutron star or a black hole, dark matter and dark energy. This book is intended for the undergraduate and postgraduate students of Physics and Mathematics. KEY FEATURES • Step-by-step derivation of equations • Easy demagogic approach • Review questions to widen the analytical understanding of the students

The Foundation of the Generalized Theory of Relativity by Albert Einstein

The Foundation of the Generalized Theory of Relativity by Albert Einstein PDF Author: Albert Einstein
Publisher:
ISBN:
Category :
Languages : en
Pages : 102

Book Description
The theory which is sketched in the following pages forms the most wide-going generalization conceivable of what is at present known as "the theory of Relativity;" this latter theory I differentiate from the former "Special Relativity theory," and suppose it to be known. The generalization of the Relativity theory has been made much easier through the form given to the special Relativity theory by Minkowski, which mathematician was the first to recognize clearly the formal equivalence of the space like and time-like co-ordinates, and who made use of it in the building up of the theory. The mathematical apparatus useful for the general relativity theory, lay already complete in the "Absolute Differential Calculus", which were based on the researches of Gauss, Riemann and Christoffel on the non-Euclidean manifold, and which have been shaped into a system by Ricci and Levi-Civita, and already applied to the problems of theoretical physics. I have in part B of this communication developed in the simplest and clearest manner, all the supposed mathematical auxiliaries, not known to Physicists, which will be useful for our purpose, so that, a study of the mathematical literature is not necessary for an understanding of this paper. Finally in this place I thank my friend Grossmann, by whose help I was not only spared the study of the mathematical literature pertinent to this subject, but who also aided me in the researches on the field equations of gravitation.

Mathematical Problems of General Relativity I

Mathematical Problems of General Relativity I PDF Author: Demetrios Christodoulou
Publisher: European Mathematical Society
ISBN: 9783037190050
Category : Science
Languages : en
Pages : 164

Book Description
General relativity is a theory proposed by Einstein in 1915 as a unified theory of space, time and gravitation. It is based on and extends Newton's theory of gravitation as well as Newton's equations of motion. It is thus fundamentally rooted in classical mechanics. The theory can be seen as a development of Riemannian geometry, itself an extension of Gauss' intrinsic theory of curved surfaces in Euclidean space. The domain of application of the theory is astronomical systems. One of the mathematical methods analyzed and exploited in the present volume is an extension of Noether's fundamental principle connecting symmetries to conserved quantities. This is involved at a most elementary level in the very definition of the notion of hyperbolicity for an Euler-Lagrange system of partial differential equations. Another method, the study and systematic use of foliations by characteristic (null) hypersurfaces, is in the spirit of Roger Penrose's approach in his incompleteness theorem. The methods have applications beyond general relativity to problems in fluid mechanics and, more generally, to the mechanics and electrodynamics of continuous media. The book is intended for advanced students and researchers seeking an introduction to the methods and applications of general relativity.

Einstein’s Italian Mathematicians: Ricci, Levi-Civita, and the Birth of General Relativity

Einstein’s Italian Mathematicians: Ricci, Levi-Civita, and the Birth of General Relativity PDF Author: Judith R. Goodstein
Publisher: American Mathematical Soc.
ISBN: 1470428466
Category : Calculus of tensors
Languages : en
Pages :

Book Description
In the first decade of the twentieth century as Albert Einstein began formulating a revolutionary theory of gravity, the Italian mathematician Gregorio Ricci was entering the later stages of what appeared to be a productive if not particularly memorable career, devoted largely to what his colleagues regarded as the dogged development of a mathematical language he called the absolute differential calculus. In 1912, the work of these two dedicated scientists would intersect—and physics and mathematics would never be the same. Einstein's Italian Mathematicians chronicles the lives and intellectual contributions of Ricci and his brilliant student Tullio Levi-Civita, including letters, interviews, memoranda, and other personal and professional papers, to tell the remarkable, little-known story of how two Italian academicians, of widely divergent backgrounds and temperaments, came to provide the indispensable mathematical foundation—today known as the tensor calculus—for general relativity.