Membrane Nanodomains

Membrane Nanodomains PDF Author: John R. Silvius
Publisher: Morgan & Claypool Publishers
ISBN: 1615046208
Category : Science
Languages : en
Pages : 115

Book Description
Many membranes in eukaryotic cells are inhomogeneous structures in which various membrane components are nonrandomly distributed, forming diverse types of 'domains.' Some membrane domains have long been well known, because they are sufficiently large, long-lived, and morphologically well defined to be characterized using classical microscopic and biochemical approaches. However, new technologies have revealed the presence in membranes of smaller, often highly dynamic 'nanodomains' that also play key roles in membrane function. Our current understanding of the diversity, the properties, and the functions of nanodomains is still very limited and, in some cases, controversial. Nonetheless, it is clear that many important aspects of membrane biology arise from features of membrane organization that 'play out' on spatial and temporal scales that are only now becoming experimentally accessible in living systems. In this book, we will discuss properties and interactions of membrane molecules that lead to nanodomain formation, new and emerging technologies by which nanodomains can be studied, and experimental examples that illustrate both highlights and current limitations of our present knowledge of the properties of membrane nanodomains in various cell types.

Cell Membrane Nanodomains

Cell Membrane Nanodomains PDF Author: Alessandra Cambi
Publisher: CRC Press
ISBN: 1482209896
Category : Medical
Languages : en
Pages : 514

Book Description
Cell Membrane Nanodomains: From Biochemistry to Nanoscopy describes recent advances in our understanding of membrane organization, with a particular focus on the cutting-edge imaging techniques that are making these new discoveries possible. With contributions from pioneers in the field, the book explores areas where the application of these novel techniques reveals new concepts in biology. It assembles a collection of works where the integration of membrane biology and microscopy emphasizes the interdisciplinary nature of this exciting field. Beginning with a broad description of membrane organization, including seminal work on lipid partitioning in model systems and the roles of proteins in membrane organization, the book examines how lipids and membrane compartmentalization can regulate protein function and signal transduction. It then focuses on recent advances in imaging techniques and tools that foster further advances in our understanding of signaling nanoplatforms. The coverage includes several diffraction-limited imaging techniques that allow for measurements of protein distribution/clustering and membrane curvature in living cells, new fluorescent proteins, novel Laurdan analyses, and the toolbox of labeling possibilities with organic dyes. Since superresolution optical techniques have been crucial to advancing our understanding of cellular structure and protein behavior, the book concludes with a discussion of technologies that are enabling the visualization of lipids, proteins, and other molecular components at unprecedented spatiotemporal resolution. It also explains the ins and outs of the rapidly developing high- or superresolution microscopy field, including new methods and data analysis tools that exclusively pertain to these techniques. This integration of membrane biology and advanced imaging techniques emphasizes the interdisciplinary nature of this exciting field. The array of contributions from leading world experts makes this book a valuable tool for the visualization of signaling nanoplatforms by means of cutting-edge optical microscopy tools.

Cell Membrane Nanodomains

Cell Membrane Nanodomains PDF Author: Taylor & Francis Group
Publisher: CRC Press
ISBN: 9781032236742
Category :
Languages : en
Pages : 510

Book Description
This book furthers the readers' understanding of the fundamental molecular mechanisms that govern nanostructures and protein function relationships at the cell membrane and explains the ins and outs of this rapidly developing high- or super-resolution microscopy field. Contributing writers include experts from the optical nanoscopy and microscop

Cell Membrane Nanodomains

Cell Membrane Nanodomains PDF Author: Alessandra Cambi
Publisher: CRC Press
ISBN: 1482209918
Category : Medical
Languages : en
Pages : 496

Book Description
Cell Membrane Nanodomains: From Biochemistry to Nanoscopy describes recent advances in our understanding of membrane organization, with a particular focus on the cutting-edge imaging techniques that are making these new discoveries possible. With contributions from pioneers in the field, the book explores areas where the application of these novel

Expansion Microscopy for Cell Biology

Expansion Microscopy for Cell Biology PDF Author:
Publisher: Academic Press
ISBN: 0128208082
Category : Science
Languages : en
Pages : 358

Book Description
Expansion Microscopy for Cell Biology, Volume 161 in the Methods in Cell Biology series, compiles recent developments in expansion microscopy techniques (Pro-ExM, U-ExM, Ex-STED, X10, Ex-dSTORM, etc.) and their applications in cell biology, ranging from mitosis, centrioles or nuclear pore complex to plant cell, bacteria, Drosophila or neurons. Chapters in this new release include Protein-retention Expansion Microscopy: Improved Sub-cellular Imaging Resolution through Physical Specimen Expansion, Ultrastructure Expansion Microscopy (U-ExM), Expansion STED microscopy (ExSTED), Simple multi-color super-resolution by X10 microscopy, Expansion microscopy imaging of various neuronal structures, Mapping the neuronal cytoskeleton using expansion microscopy, Mechanical expansion microscopy, and much more. Provides the authority and expertise of leading contributors from an international board of authors Represents the latest release in the Methods in Cell Biology series Includes the latest information on Expansion Microscopy for Cell Biology

Endocytosis in Plants

Endocytosis in Plants PDF Author: Jozef Šamaj
Publisher: Springer Science & Business Media
ISBN: 3642324622
Category : Science
Languages : en
Pages : 337

Book Description
Endocytosis is a fundamental cellular process by means of which cells internalize extracellular and plasma membrane cargos for recycling or degradation. It is important for the establishment and maintenance of cell polarity, subcellular signaling and uptake of nutrients into specialized cells, but also for plant cell interactions with pathogenic and symbiotic microbes. Endocytosis starts by vesicle formation at the plasma membrane and progresses through early and late endosomal compartments. In these endosomes cargo is sorted and it is either recycled back to the plasma membrane, or degraded in the lytic vacuole. This book presents an overview of our current knowledge of endocytosis in plants with a main focus on the key molecules undergoing and regulating endocytosis. It also provides up to date methodological approaches as well as principles of protein, structural lipid, sugar and microbe internalization in plant cells. The individual chapters describe clathrin-mediated and fluid-phase endocytosis, as well as flotillin-mediated endocytosis and internalization of microbes. The book was written for a broad spectrum of readers including students, teachers and researchers.

Essays in Biochemistry

Essays in Biochemistry PDF Author: Ingela Parmryd
Publisher:
ISBN: 9781855781931
Category : Cell membranes
Languages : en
Pages : 206

Book Description


Molecular Organization of Membranes: Where Biology Meets Biophysics

Molecular Organization of Membranes: Where Biology Meets Biophysics PDF Author: Marek Cebecauer
Publisher: Frontiers Media SA
ISBN: 2889454096
Category :
Languages : en
Pages : 150

Book Description
Biological membranes protect cells and organelles from the surrounding environment, but serve also as organising platforms for physiological processes such as cell signalling. The hydrophobic core of membranes is composed of lipids and proteins influencing each other. Local membrane composition and properties define its molecular organisation and, in this way, regulate the function of all associated molecules. Therefore, studying interactions of components, biophysical properties and overall membrane dynamics provides essential information on its function in the context of cell activities. Such knowledge can contribute to biomedical fields such as pharmacology, immunology, neurobiology and many others. The goal of the Research Topic entitled ‘Molecular organisation of membranes: where biology meets biophysics’ was to provide a comprehensive platform for publishing articles, reviews and opinions focused on membrane organisation and the forces behind its heterogeneous and dynamic structure. We collected 11 works which cover topics as diverse as general membrane organisation models, membrane trafficking and signalling regulation, biogenesis of caveolae, protein-lipid interactions and the importance of membrane-associated tetraspanins networks. The prevalent theme was the existence of membrane nanodomains. To this point, new emerging technologies are presented which own the power to bring a novel insight on how membrane nanodomains are formed and maintained and what is their function. We believe that the collection of works in this Research Topic brings forward some important questions which will stimulate further research in this difficult but exciting field.

Nano and Micro Engineered Membrane Technology

Nano and Micro Engineered Membrane Technology PDF Author: CJM van Rijn
Publisher: Elsevier
ISBN: 9780080512341
Category : Technology & Engineering
Languages : en
Pages : 398

Book Description
Nano and Micro Engineered Membrane Technology is about Nano and micro engineered membrane technology, an emerging new technological area in membrane technology. Potential applications cover a broad spectrum of science, such as micro and nano filtration, gas separation, optics and nanophotonics, catalysis, microbiology, controlled drug delivery, nanopatterning, micro contact printing, atomisation, cross flow emulsification, etc. A brief overview of filtration membranes and pore structures is presented in chapter 1 and in the subsequent chapter 2 an overview is presented of conventional micro perforation methods, like laser drilling, electroforming, precision etching etc. With micro engineering techniques (chapter 3), originating from the semiconductor industry, it is relatively easy to downscale and form submicron pores (down to 100 nm) using photolithographic methods, with e.g. contact masks and wafer steppers. In chapter 4 some elementary fluid mechanics related to fluid flow in conducts and single and multiple orifices is presented covering analytical methods as well as computational fluid dynamics. Much effort has been put in strength and maximum pressure load analysis (chapter 5) of perforated and unperforated membranes. New analytical expressions were obtained that were verified by a number of computer simulations and many experiments. A separate chapter (chapter 6) has been devoted to the pioneering work of manufacturing polymeric perforated membranes because of its potential future economical impact. Large scale microfiltration applications on e.g. skim milk and lager beer are presented in chapter 7, whereas in chapter 8 a micro scale Lab-on-a-Chip microfiltration/fractionation demonstrator is discussed. Nanotechnology and nano engineered membranes is the fascinating topic of chapter 9, with typical examples as nanopatterning, nanophotonics and nanomembrane technology. This book closes with novel pioneering applications on atomization (chapter 10) for deep pulmonary inhale and cross flow emulsification (chapter 11) for the manufacturing of e.g. functional foods and nano/micro emulsions. Overview on the implementation of nano and micro engineering techniques in membrane science; which is an upcoming new cross-road technology Demonstration of feasibility with respect to micro and nano filtration, gas separation, photonic structures, catalysis, microbiology, controlled drug delivery, nanopatterning, micro contact printing, atomisation and emulsification techniques Informative introductions with rules of thumb for fluid flow in micro channels, pressure strength of thin supported perforated and unperforated membranes, silicon micro machining techniques, membrane filtration technology, Rayleigh breakup and cross-flow emulsification

Nano-Enhanced and Nanostructured Polymer-Based Membranes for Energy Applications

Nano-Enhanced and Nanostructured Polymer-Based Membranes for Energy Applications PDF Author: Maria Giovanna Buonomenna
Publisher: Woodhead Publishing
ISBN: 0081019866
Category : Technology & Engineering
Languages : en
Pages : 426

Book Description
There is a growing need for better membranes in several emerging application fields especially those related to energy conversion and storage as well as to water treatment and recycling. Processability, is an important functional property, often ignored, especially in the early discovery phase for new materials, but it should be one of the most important properties, that needs to be considered in the development of better membrane materials. Useful membrane materials have to be capable of being formed into thin membranes, in particular for membrane gas separation, water treatment and desalination, and then packaged, into large area membrane modules. All gas separation membranes that are in current commercial use are based on polymers, which are solution-processable. This book intends to deal with composite, in most cases hybrid polymer-based membranes for three separate application fields: energy conversion, energy storage and water treatment and recovery. Each chapter will explain clearly the various membrane processes then go on to discuss in detail the corresponding advanced membranes used. The logic that lies behind this is that you have to understand the process in order to develop new high-performance membranes. By taking this approach, the author aims to overcome the disconnection that currently exists between membrane materials scientists and industrial process engineers. Discusses interdisciplinary content by a single author, approaching synthesis and development of materials from the perspective of their processability Describes the novel aspects of membrane science that is related to energy storage, conversion and wastewater treatment Presents an emphasis on scientific results which have an impact on real applications in terms of renewable and clean energy challenges