Mesoscopic Physics and Electronics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Mesoscopic Physics and Electronics PDF full book. Access full book title Mesoscopic Physics and Electronics by Tsuneya Ando. Download full books in PDF and EPUB format.

Mesoscopic Physics and Electronics

Mesoscopic Physics and Electronics PDF Author: Tsuneya Ando
Publisher: Springer Science & Business Media
ISBN: 3642719767
Category : Technology & Engineering
Languages : en
Pages : 293

Book Description
Semiconductor technology has developed considerably during the past several decades. The exponential growth in microelectronic processing power has been achieved by a constant scaling down of integrated cir,cuits. Smaller fea ture sizes result in increased functional density, faster speed, and lower costs. One key ingredient of the LSI technology is the development of the lithog raphy and microfabrication. The current minimum feature size is already as small as 0.2 /tm, beyond the limit imposed by the wavelength of visible light and rapidly approaching fundamental limits. The next generation of devices is highly likely to show unexpected properties due to quantum effects and fluctuations. The device which plays an important role in LSIs is MOSFETs (metal oxide-semiconductor field-effect transistors). In MOSFETs an inversion layer is formed at the interface of silicon and its insulating oxide. The inversion layer provides a unique two-dimensional (2D) system in which the electron concentration is controlled almost freely over a very wide range. Physics of such 2D systems was born in the mid-1960s together with the development of MOSFETs. The integer quantum Hall effect was first discovered in this system.

Mesoscopic Physics and Electronics

Mesoscopic Physics and Electronics PDF Author: Tsuneya Ando
Publisher: Springer Science & Business Media
ISBN: 3642719767
Category : Technology & Engineering
Languages : en
Pages : 293

Book Description
Semiconductor technology has developed considerably during the past several decades. The exponential growth in microelectronic processing power has been achieved by a constant scaling down of integrated cir,cuits. Smaller fea ture sizes result in increased functional density, faster speed, and lower costs. One key ingredient of the LSI technology is the development of the lithog raphy and microfabrication. The current minimum feature size is already as small as 0.2 /tm, beyond the limit imposed by the wavelength of visible light and rapidly approaching fundamental limits. The next generation of devices is highly likely to show unexpected properties due to quantum effects and fluctuations. The device which plays an important role in LSIs is MOSFETs (metal oxide-semiconductor field-effect transistors). In MOSFETs an inversion layer is formed at the interface of silicon and its insulating oxide. The inversion layer provides a unique two-dimensional (2D) system in which the electron concentration is controlled almost freely over a very wide range. Physics of such 2D systems was born in the mid-1960s together with the development of MOSFETs. The integer quantum Hall effect was first discovered in this system.

Electronic Transport in Mesoscopic Systems

Electronic Transport in Mesoscopic Systems PDF Author: Supriyo Datta
Publisher: Cambridge University Press
ISBN: 9780521599436
Category : Science
Languages : en
Pages : 398

Book Description
A thorough account of the theory of electronic transport in semiconductor nanostructures.

Introduction to Mesoscopic Physics

Introduction to Mesoscopic Physics PDF Author: Yoseph Imry
Publisher:
ISBN: 9780198507383
Category : Mesoscopic phenomena (Physics).
Languages : en
Pages : 258

Book Description
Mesoscopic physics refers to the physics of structures larger than a nanometer (one billionth of a meter) but smaller than a micrometer (one millionth of a meter). This size range is the stage on which the exciting new research on submicroscopic and electronic and mechanical devices is being done. This research often crosses the boundary between physics and engineering, since engineering such tiny electronic components requires a firm grasp of quantum physics. Applications for the future may include such wonders as microscopic robot surgeons that travel through the blood stream to repair clogged arteries, submicroscopic actuators and builders, and supercomputers that fit on the head of a pin. The world of the future is being planned and built by physicists, engineers, and chemists working in the microscopic realm. This book can be used as the main text in a course on mesoscopic physics or as a supplementary text in electronic devices, semiconductor devices, and condensed matter physics courses. For this new edition, the author has substantially updated and modified the material especially of chapters 3: Dephasing, 8: Noise in mesoscopic systems, and the concluding chapter 9.

Mesoscopic Electronics in Solid State Nanostructures

Mesoscopic Electronics in Solid State Nanostructures PDF Author: Thomas Heinzel
Publisher: John Wiley & Sons
ISBN: 3527618929
Category : Science
Languages : en
Pages : 412

Book Description
This text treats electronic transport in the regime where conventional textbook models are no longer applicable, including the effect of electronic phase coherence, energy quantization and single-electron charging. This second edition is completely updated and expanded, and now comprises new chapters on spin electronics and quantum information processing, transport in inhomogeneous magnetic fields, organic/molecular electronics, and applications of field effect transistors. The book also provides an overview of semiconductor processing technologies and experimental techniques. With a number of examples and problems with solutions, this is an ideal introduction for students and beginning researchers in the field. "This book is a useful tool, too, for the experienced researcher to get a summary of recent developments in solid state nanostructures. I applaud the author for a marvellous contribution to the scientific community of mesoscopic electronics." Prof. K. Ensslin, Solid State Physics Laboratory, ETH Zurich

Electronic Transport in Mesoscopic Systems

Electronic Transport in Mesoscopic Systems PDF Author: Supriyo Datta
Publisher: Cambridge University Press
ISBN: 1139643010
Category : Science
Languages : en
Pages :

Book Description
Advances in semiconductor technology have made possible the fabrication of structures whose dimensions are much smaller than the mean free path of an electron. This book gives a thorough account of the theory of electronic transport in such mesoscopic systems. After an initial chapter covering fundamental concepts, the transmission function formalism is presented, and used to describe three key topics in mesoscopic physics: the quantum Hall effect; localisation; and double-barrier tunnelling. Other sections include a discussion of optical analogies to mesoscopic phenomena, and the book concludes with a description of the non-equilibrium Green's function formalism and its relation to the transmission formalism. Complete with problems and solutions, the book will be of great interest to graduate students of mesoscopic physics and nanoelectronic device engineering, as well as to established researchers in these fields.

Transport in Semiconductor Mesoscopic Devices

Transport in Semiconductor Mesoscopic Devices PDF Author: David K. Ferry
Publisher:
ISBN: 9780750311274
Category : Electron transport
Languages : en
Pages : 0

Book Description
Modern electronics is being transformed as device size decreases to a size where the dimensions are significantly smaller than the constituent electron's mean free path. In such systems the electron motion is strongly confined resulting in dramatic changes of behaviour compared to the bulk. This book introduces the physics and applications of transport in such mesoscopic and nanoscale electronic systems and devices. The behaviour of these novel devices is influenced by numerous effects not seen in bulk semiconductors, such as the Aharonov-Bohm Effect, disorder and localization, energy quantization, electron wave interference, spin splitting, tunnelling and the quantum hall effect to name a few. Including coverage of recent developments, and with a chapter on carbon-based nanoelectronics, this book will provide a good course text for advanced students or as a handy reference for researchers or those entering this interdisciplinary area.

Mesoscopic Physics of Electrons and Photons

Mesoscopic Physics of Electrons and Photons PDF Author: Eric Akkermans
Publisher: Cambridge University Press
ISBN: 1139463993
Category : Science
Languages : en
Pages : 479

Book Description
Quantum mesoscopic physics covers a whole class in interference effects related to the propagation of waves in complex and random media. These effects are ubiquitous in physics, from the behaviour of electrons in metals and semiconductors to the propagation of electromagnetic waves in suspensions such as colloids, and quantum systems like cold atomic gases. A solid introduction to quantum mesoscopic physics, this book is a modern account of the problem of coherent wave propagation in random media. It provides a unified account of the basic theoretical tools and methods, highlighting the common aspects of the various optical and electronic phenomena involved and presenting a large number of experimental results. With over 200 figures, and exercises throughout, the book was originally published in 2007 and is ideal for graduate students in physics, electrical engineering, applied physics, acoustics and astrophysics. It will also be an interesting reference for researchers.

Transport in Nanostructures

Transport in Nanostructures PDF Author: David K. Ferry
Publisher: Cambridge University Press
ISBN: 0521877482
Category : Science
Languages : en
Pages : 671

Book Description
The advent of semiconductor structures whose characteristic dimensions are smaller than the mean free path of carriers has led to the development of novel devices, and advances in theoretical understanding of mesoscopic systems or nanostructures. This book has been thoroughly revised and provides a much-needed update on the very latest experimental research into mesoscopic devices and develops a detailed theoretical framework for understanding their behaviour. Beginning with the key observable phenomena in nanostructures, the authors describe quantum confined systems, transmission in nanostructures, quantum dots, and single electron phenomena. Separate chapters are devoted to interference in diffusive transport, temperature decay of fluctuations, and non-equilibrium transport and nanodevices. Throughout the book, the authors interweave experimental results with the appropriate theoretical formalism. The book will be of great interest to graduate students taking courses in mesoscopic physics or nanoelectronics, and researchers working on semiconductor nanostructures.

Quantum Transport

Quantum Transport PDF Author: Supriyo Datta
Publisher: Cambridge University Press
ISBN: 1139443240
Category : Technology & Engineering
Languages : en
Pages :

Book Description
This book presents the conceptual framework underlying the atomistic theory of matter, emphasizing those aspects that relate to current flow. This includes some of the most advanced concepts of non-equilibrium quantum statistical mechanics. No prior acquaintance with quantum mechanics is assumed. Chapter 1 provides a description of quantum transport in elementary terms accessible to a beginner. The book then works its way from hydrogen to nanostructures, with extensive coverage of current flow. The final chapter summarizes the equations for quantum transport with illustrative examples showing how conductors evolve from the atomic to the ohmic regime as they get larger. Many numerical examples are used to provide concrete illustrations and the corresponding Matlab codes can be downloaded from the web. Videostreamed lectures, keyed to specific sections of the book, are also available through the web. This book is primarily aimed at senior and graduate students.

Berry Phases in Electronic Structure Theory

Berry Phases in Electronic Structure Theory PDF Author: David Vanderbilt
Publisher: Cambridge University Press
ISBN: 1108661300
Category : Science
Languages : en
Pages : 395

Book Description
Over the past twenty-five years, mathematical concepts associated with geometric phases have come to occupy a central place in our modern understanding of the physics of electrons in solids. These 'Berry phases' describe the global phase acquired by a quantum state as the Hamiltonian is changed. Beginning at an elementary level, this book provides a pedagogical introduction to the important role of Berry phases and curvatures, and outlines their great influence upon many key properties of electrons in solids, including electric polarization, anomalous Hall conductivity, and the nature of the topological insulating state. It focuses on drawing connections between physical concepts and provides a solid framework for their integration, enabling researchers and students to explore and develop links to related fields. Computational examples and exercises throughout provide an added dimension to the book, giving readers the opportunity to explore the central concepts in a practical and engaging way.