Numerical Polynomial Algebra PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Numerical Polynomial Algebra PDF full book. Access full book title Numerical Polynomial Algebra by Hans J. Stetter. Download full books in PDF and EPUB format.

Numerical Polynomial Algebra

Numerical Polynomial Algebra PDF Author: Hans J. Stetter
Publisher: SIAM
ISBN: 9780898717976
Category : Mathematics
Languages : en
Pages : 487

Book Description
In many important areas of scientific computing, polynomials in one or more variables are employed in the mathematical modeling of real-life phenomena; yet most of classical computer algebra assumes exact rational data. This book is the first comprehensive treatment of the emerging area of numerical polynomial algebra, an area that falls between classical numerical analysis and classical computer algebra but, surprisingly, has received little attention so far. The author introduces a conceptual framework that permits the meaningful solution of various algebraic problems with multivariate polynomial equations whose coefficients have some indeterminacy; for this purpose, he combines approaches of both numerical linear algebra and commutative algebra. For the application scientist, Numerical Polynomial Algebra provides both a survey of polynomial problems in scientific computing that may be solved numerically and a guide to their numerical treatment. In addition, the book provides both introductory sections and novel extensions of numerical analysis and computer algebra, making it accessible to the reader with expertise in either one of these areas.

Numerical Polynomial Algebra

Numerical Polynomial Algebra PDF Author: Hans J. Stetter
Publisher: SIAM
ISBN: 9780898717976
Category : Mathematics
Languages : en
Pages : 487

Book Description
In many important areas of scientific computing, polynomials in one or more variables are employed in the mathematical modeling of real-life phenomena; yet most of classical computer algebra assumes exact rational data. This book is the first comprehensive treatment of the emerging area of numerical polynomial algebra, an area that falls between classical numerical analysis and classical computer algebra but, surprisingly, has received little attention so far. The author introduces a conceptual framework that permits the meaningful solution of various algebraic problems with multivariate polynomial equations whose coefficients have some indeterminacy; for this purpose, he combines approaches of both numerical linear algebra and commutative algebra. For the application scientist, Numerical Polynomial Algebra provides both a survey of polynomial problems in scientific computing that may be solved numerically and a guide to their numerical treatment. In addition, the book provides both introductory sections and novel extensions of numerical analysis and computer algebra, making it accessible to the reader with expertise in either one of these areas.

Numerical Methods for Roots of Polynomials - Part II

Numerical Methods for Roots of Polynomials - Part II PDF Author: J.M. McNamee
Publisher: Elsevier Inc. Chapters
ISBN: 0128076968
Category : Mathematics
Languages : en
Pages : 728

Book Description


Numerically Solving Polynomial Systems with Bertini

Numerically Solving Polynomial Systems with Bertini PDF Author: Daniel J. Bates
Publisher: SIAM
ISBN: 1611972701
Category : Science
Languages : en
Pages : 372

Book Description
This book is a guide to concepts and practice in numerical algebraic geometry ? the solution of systems of polynomial equations by numerical methods. Through numerous examples, the authors show how to apply the well-received and widely used open-source Bertini software package to compute solutions, including a detailed manual on syntax and usage options. The authors also maintain a complementary web page where readers can find supplementary materials and Bertini input files. Numerically Solving Polynomial Systems with Bertini approaches numerical algebraic geometry from a user's point of view with numerous examples of how Bertini is applicable to polynomial systems. It treats the fundamental task of solving a given polynomial system and describes the latest advances in the field, including algorithms for intersecting and projecting algebraic sets, methods for treating singular sets, the nascent field of real numerical algebraic geometry, and applications to large polynomial systems arising from differential equations. Those who wish to solve polynomial systems can start gently by finding isolated solutions to small systems, advance rapidly to using algorithms for finding positive-dimensional solution sets (curves, surfaces, etc.), and learn how to use parallel computers on large problems. These techniques are of interest to engineers and scientists in fields where polynomial equations arise, including robotics, control theory, economics, physics, numerical PDEs, and computational chemistry.

The Numerical Solution of Systems of Polynomials Arising in Engineering and Science

The Numerical Solution of Systems of Polynomials Arising in Engineering and Science PDF Author: Andrew John Sommese
Publisher: World Scientific
ISBN: 9812561846
Category : Mathematics
Languages : en
Pages : 426

Book Description
Written by the founders of the new and expanding field of numerical algebraic geometry, this is the first book that uses an algebraic-geometric approach to the numerical solution of polynomial systems and also the first one to treat numerical methods for finding positive dimensional solution sets. The text covers the full theory from methods developed for isolated solutions in the 1980's to the most recent research on positive dimensional sets.

Numerical Methods for Roots of Polynomials -

Numerical Methods for Roots of Polynomials - PDF Author: J.M. McNamee
Publisher: Newnes
ISBN: 008093143X
Category : Mathematics
Languages : en
Pages : 728

Book Description
Numerical Methods for Roots of Polynomials - Part II along with Part I (9780444527295) covers most of the traditional methods for polynomial root-finding such as interpolation and methods due to Graeffe, Laguerre, and Jenkins and Traub. It includes many other methods and topics as well and has a chapter devoted to certain modern virtually optimal methods. Additionally, there are pointers to robust and efficient programs. This book is invaluable to anyone doing research in polynomial roots, or teaching a graduate course on that topic. First comprehensive treatment of Root-Finding in several decades with a description of high-grade software and where it can be downloaded Offers a long chapter on matrix methods and includes Parallel methods and errors where appropriate Proves invaluable for research or graduate course

A Polynomial Approach to Linear Algebra

A Polynomial Approach to Linear Algebra PDF Author: Paul A. Fuhrmann
Publisher: Springer Science & Business Media
ISBN: 1441987347
Category : Mathematics
Languages : en
Pages : 368

Book Description
A Polynomial Approach to Linear Algebra is a text which is heavily biased towards functional methods. In using the shift operator as a central object, it makes linear algebra a perfect introduction to other areas of mathematics, operator theory in particular. This technique is very powerful as becomes clear from the analysis of canonical forms (Frobenius, Jordan). It should be emphasized that these functional methods are not only of great theoretical interest, but lead to computational algorithms. Quadratic forms are treated from the same perspective, with emphasis on the important examples of Bezoutian and Hankel forms. These topics are of great importance in applied areas such as signal processing, numerical linear algebra, and control theory. Stability theory and system theoretic concepts, up to realization theory, are treated as an integral part of linear algebra. Finally there is a chapter on Hankel norm approximation for the case of scalar rational functions which allows the reader to access ideas and results on the frontier of current research.

Computer Algebra and Polynomials

Computer Algebra and Polynomials PDF Author: Jaime Gutierrez
Publisher: Springer
ISBN: 3319150812
Category : Computers
Languages : en
Pages : 213

Book Description
Algebra and number theory have always been counted among the most beautiful mathematical areas with deep proofs and elegant results. However, for a long time they were not considered that important in view of the lack of real-life applications. This has dramatically changed: nowadays we find applications of algebra and number theory frequently in our daily life. This book focuses on the theory and algorithms for polynomials over various coefficient domains such as a finite field or ring. The operations on polynomials in the focus are factorization, composition and decomposition, basis computation for modules, etc. Algorithms for such operations on polynomials have always been a central interest in computer algebra, as it combines formal (the variables) and algebraic or numeric (the coefficients) aspects. The papers presented were selected from the Workshop on Computer Algebra and Polynomials, which was held in Linz at the Johann Radon Institute for Computational and Applied Mathematics (RICAM) during November 25-29, 2013, at the occasion of the Special Semester on Applications of Algebra and Number Theory.

Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems

Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems PDF Author: Alexander Morgan
Publisher: SIAM
ISBN: 0898719038
Category : Computers
Languages : en
Pages : 331

Book Description
This book introduces the numerical technique of polynomial continuation, which is used to compute solutions to systems of polynomial equations. Originally published in 1987, it remains a useful starting point for the reader interested in learning how to solve practical problems without advanced mathematics. Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems is easy to understand, requiring only a knowledge of undergraduate-level calculus and simple computer programming. The book is also practical; it includes descriptions of various industrial-strength engineering applications and offers Fortran code for polynomial solvers on an associated Web page. It provides a resource for high-school and undergraduate mathematics projects. Audience: accessible to readers with limited mathematical backgrounds. It is appropriate for undergraduate mechanical engineering courses in which robotics and mechanisms applications are studied.

Numerical Methods for Roots of Polynomials

Numerical Methods for Roots of Polynomials PDF Author: J. M. McNamee
Publisher:
ISBN:
Category : Equations, Roots of
Languages : en
Pages :

Book Description


Explorations In Numerical Analysis: Python Edition

Explorations In Numerical Analysis: Python Edition PDF Author: James V Lambers
Publisher: World Scientific
ISBN: 9811227950
Category : Mathematics
Languages : en
Pages : 691

Book Description
This textbook is intended to introduce advanced undergraduate and early-career graduate students to the field of numerical analysis. This field pertains to the design, analysis, and implementation of algorithms for the approximate solution of mathematical problems that arise in applications spanning science and engineering, and are not practical to solve using analytical techniques such as those taught in courses in calculus, linear algebra or differential equations.Topics covered include computer arithmetic, error analysis, solution of systems of linear equations, least squares problems, eigenvalue problems, nonlinear equations, optimization, polynomial interpolation and approximation, numerical differentiation and integration, ordinary differential equations, and partial differential equations. For each problem considered, the presentation includes the derivation of solution techniques, analysis of their efficiency, accuracy and robustness, and details of their implementation, illustrated through the Python programming language.This text is suitable for a year-long sequence in numerical analysis, and can also be used for a one-semester course in numerical linear algebra.