Progress in Modeling and Simulation of Batteries PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Progress in Modeling and Simulation of Batteries PDF full book. Access full book title Progress in Modeling and Simulation of Batteries by John Turner. Download full books in PDF and EPUB format.

Progress in Modeling and Simulation of Batteries

Progress in Modeling and Simulation of Batteries PDF Author: John Turner
Publisher: SAE International
ISBN: 076808282X
Category : Science
Languages : en
Pages : 98

Book Description
Modeling and simulation of batteries, in conjunction with theory and experiment, are important research tools that offer opportunities for advancement of technologies that are critical to electric motors. The development of data from the application of these tools can provide the basis for managerial and technical decision-making. Together, these will continue to transform batteries for electric vehicles. This collection of nine papers presents the modeling and simulation of batteries and the continuing contribution being made to this impressive progress, including topics that cover: • Thermal behavior and characteristics • Battery management system design and analysis • Moderately high-fidelity 3D capabilities • Optimization Techniques and Durability As electric vehicles continue to gain interest from manufacturers and consumers alike, improvements in economy and affordability, as well as adoption of alternative fuel sources to meet government mandates are driving battery research and development. Progress in modeling and simulation will continue to contribute to battery improvements that deliver increased power, energy storage, and durability to further enhance the appeal of electric vehicles.

Progress in Modeling and Simulation of Batteries

Progress in Modeling and Simulation of Batteries PDF Author: John Turner
Publisher: SAE International
ISBN: 076808282X
Category : Science
Languages : en
Pages : 98

Book Description
Modeling and simulation of batteries, in conjunction with theory and experiment, are important research tools that offer opportunities for advancement of technologies that are critical to electric motors. The development of data from the application of these tools can provide the basis for managerial and technical decision-making. Together, these will continue to transform batteries for electric vehicles. This collection of nine papers presents the modeling and simulation of batteries and the continuing contribution being made to this impressive progress, including topics that cover: • Thermal behavior and characteristics • Battery management system design and analysis • Moderately high-fidelity 3D capabilities • Optimization Techniques and Durability As electric vehicles continue to gain interest from manufacturers and consumers alike, improvements in economy and affordability, as well as adoption of alternative fuel sources to meet government mandates are driving battery research and development. Progress in modeling and simulation will continue to contribute to battery improvements that deliver increased power, energy storage, and durability to further enhance the appeal of electric vehicles.

Battery System Modeling

Battery System Modeling PDF Author: Shunli Wang
Publisher: Elsevier
ISBN: 0323904335
Category : Science
Languages : en
Pages : 356

Book Description
Battery System Modeling provides advances on the modeling of lithium-ion batteries. Offering step-by-step explanations, the book systematically guides the reader through the modeling of state of charge estimation, energy prediction, power evaluation, health estimation, and active control strategies. Using applications alongside practical case studies, each chapter shows the reader how to use the modeling tools provided. Moreover, the chemistry and characteristics are described in detail, with algorithms provided in every chapter. Providing a technical reference on the design and application of Li-ion battery management systems, this book is an ideal reference for researchers involved in batteries and energy storage. Moreover, the step-by-step guidance and comprehensive introduction to the topic makes it accessible to audiences of all levels, from experienced engineers to graduates. Explains how to model battery systems, including equivalent, electrical circuit and electrochemical nernst modeling Includes comprehensive coverage of battery state estimation methods, including state of charge estimation, energy prediction, power evaluation and health estimation Provides a dedicated chapter on active control strategies

Modeling and Simulation of Lithium-ion Power Battery Thermal Management

Modeling and Simulation of Lithium-ion Power Battery Thermal Management PDF Author: Junqiu Li
Publisher: Springer
ISBN: 9789811908439
Category : Technology & Engineering
Languages : en
Pages : 335

Book Description
This book focuses on the thermal management technology of lithium-ion batteries for vehicles. It introduces the charging and discharging temperature characteristics of lithium-ion batteries for vehicles, the method for modeling heat generation of lithium-ion batteries, experimental research and simulation on air-cooled and liquid-cooled heat dissipation of lithium-ion batteries, lithium-ion battery heating method based on PTC and wide-line metal film, self-heating using sinusoidal alternating current. This book is mainly for practitioners in the new energy vehicle industry, and it is suitable for reading and reference by researchers and engineering technicians in related fields such as new energy vehicles, thermal management and batteries. It can also be used as a reference book for undergraduates and graduate students in energy and power, electric vehicles, batteries and other related majors.

Simulation of Battery Systems

Simulation of Battery Systems PDF Author: Farschad Torabi
Publisher: Academic Press
ISBN: 0128165952
Category : Science
Languages : en
Pages : 430

Book Description
Simulation of Battery Systems: Fundamentals and Applications covers both the fundamental and technical aspects of battery systems. It is a solid reference on the simulation of battery dynamics based on fundamental governing equations of porous electrodes. Sections cover the fundamentals of electrochemistry and how to obtain electrochemical governing equations for porous electrodes, the governing equations and physical characteristics of lead-acid batteries, the physical characteristics of zinc-silver oxide batteries, experimental tests and parameters necessary for simulation and validation of battery dynamics, and an environmental impact and techno-economic assessment of battery systems for different applications, such as electric vehicles and battery energy storage. The book contains introductory information, with most chapters requiring a solid background in engineering or applied science. Battery industrial companies who want to improve their industrial batteries will also find this book useful. Includes carefully selected in-text problems, case studies and illustrative examples Features representative chapter-end problems, along with practical systems and applications Covers various numerical methods, including those based on CFD and optimization, also including free codes and databases

Physical Multiscale Modeling and Numerical Simulation of Electrochemical Devices for Energy Conversion and Storage

Physical Multiscale Modeling and Numerical Simulation of Electrochemical Devices for Energy Conversion and Storage PDF Author: Alejandro A. Franco
Publisher: Springer
ISBN: 1447156773
Category : Technology & Engineering
Languages : en
Pages : 249

Book Description
The aim of this book is to review innovative physical multiscale modeling methods which numerically simulate the structure and properties of electrochemical devices for energy storage and conversion. Written by world-class experts in the field, it revisits concepts, methodologies and approaches connecting ab initio with micro-, meso- and macro-scale modeling of components and cells. It also discusses the major scientific challenges of this field, such as that of lithium-ion batteries. This book demonstrates how fuel cells and batteries can be brought together to take advantage of well-established multi-scale physical modeling methodologies to advance research in this area. This book also highlights promising capabilities of such approaches for inexpensive virtual experimentation. In recent years, electrochemical systems such as polymer electrolyte membrane fuel cells, solid oxide fuel cells, water electrolyzers, lithium-ion batteries and supercapacitors have attracted much attention due to their potential for clean energy conversion and as storage devices. This has resulted in tremendous technological progress, such as the development of new electrolytes and new engineering designs of electrode structures. However, these technologies do not yet possess all the necessary characteristics, especially in terms of cost and durability, to compete within the most attractive markets. Physical multiscale modeling approaches bridge the gap between materials’ atomistic and structural properties and the macroscopic behavior of a device. They play a crucial role in optimizing the materials and operation in real-life conditions, thereby enabling enhanced cell performance and durability at a reduced cost. This book provides a valuable resource for researchers, engineers and students interested in physical modelling, numerical simulation, electrochemistry and theoretical chemistry.

Electrochemical Systems

Electrochemical Systems PDF Author: John Newman
Publisher: John Wiley & Sons
ISBN: 0471478423
Category : Science
Languages : en
Pages : 671

Book Description
The new edition of the cornerstone text on electrochemistry Spans all the areas of electrochemistry, from the basicsof thermodynamics and electrode kinetics to transport phenomena inelectrolytes, metals, and semiconductors. Newly updated andexpanded, the Third Edition covers important new treatments, ideas,and technologies while also increasing the book's accessibility forreaders in related fields. Rigorous and complete presentation of the fundamentalconcepts In-depth examples applying the concepts to real-life designproblems Homework problems ranging from the reinforcing to the highlythought-provoking Extensive bibliography giving both the historical developmentof the field and references for the practicing electrochemist.

Multiscale Modelling and Simulation

Multiscale Modelling and Simulation PDF Author: Sabine Attinger
Publisher: Springer Science & Business Media
ISBN: 9783540211808
Category : Mathematics
Languages : en
Pages : 304

Book Description
In August 2003, ETHZ Computational Laboratory (CoLab), together with the Swiss Center for Scientific Computing in Manno and the Università della Svizzera Italiana (USI), organized the Summer School in "Multiscale Modelling and Simulation" in Lugano, Switzerland. This summer school brought together experts in different disciplines to exchange ideas on how to link methodologies on different scales. Relevant examples of practical interest include: structural analysis of materials, flow through porous media, turbulent transport in high Reynolds number flows, large-scale molecular dynamic simulations, ab-initio physics and chemistry, and a multitude of others. Though multiple scale models are not new, the topic has recently taken on a new sense of urgency. A number of hybrid approaches are now created in which ideas coming from distinct disciplines or modelling approaches are unified to produce new and computationally efficient techniques.

Progress in Engineering Technology

Progress in Engineering Technology PDF Author: Muhamad Husaini Abu Bakar
Publisher: Springer Nature
ISBN: 3030285057
Category : Technology & Engineering
Languages : en
Pages : 270

Book Description
This book presents recent developments in the areas of engineering and technology, focusing on experimental, numerical, and theoretical approaches. In the first part, the emphasis is on the emerging area of electromobility and its sub-disciplines, e.g. battery development, improved efficiency due to new designs and materials, and intelligent control approaches. In turn, the book’s second part addresses the broader topic of energy conversion and generation based on classical (petrol engines) and more modern approaches (e.g. turbines). The third and last part addresses quality control and boosting engineering efficiency in a broader sense. Topics covered include e.g. modern contactless screening methods and related image processing.

Advanced Batteries

Advanced Batteries PDF Author: Robert Huggins
Publisher: Springer Science & Business Media
ISBN: 0387764240
Category : Technology & Engineering
Languages : en
Pages : 491

Book Description
Storage and conversion are critical components of important energy-related technologies. "Advanced Batteries: Materials Science Aspects" employs materials science concepts and tools to describe the critical features that control the behavior of advanced electrochemical storage systems. This volume focuses on the basic phenomena that determine the properties of the components, i.e. electrodes and electrolytes, of advanced systems, as well as experimental methods used to study their critical parameters. This unique materials science approach utilizes concepts and methodologies different from those typical in electrochemical texts, offering a fresh, fundamental and tutorial perspective of advanced battery systems. Graduate students, scientists and engineers interested in electrochemical energy storage and conversion will find "Advanced Batteries: Materials Science Aspects" a valuable reference.

Lifetime Prediction and Simulation Models of Different Energy Storage Devices

Lifetime Prediction and Simulation Models of Different Energy Storage Devices PDF Author: Julia Kowal
Publisher: MDPI
ISBN: 3039365614
Category : Technology & Engineering
Languages : en
Pages : 92

Book Description
Energy storage is one of the most important enablers for the transformation to a sustainable energy supply with greater mobility. For vehicles, but also for many stationary applications, the batteries used for energy storage are very flexible but also have a rather limited lifetime compared to other storage principles. This Special Issue is a collection of articles that collectively address the following questions: What are the factors influencing the aging of different energy storage technologies? How can we extend the lifetime of storage systems? How can the aging of an energy storage be detected and predicted? When do we have to exchange the storage device? The articles cover lithium-ion batteries, supercaps, and flywheels.