Quantum Measurement PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Quantum Measurement PDF full book. Access full book title Quantum Measurement by Paul Busch. Download full books in PDF and EPUB format.

Quantum Measurement

Quantum Measurement PDF Author: Paul Busch
Publisher: Springer
ISBN: 331943389X
Category : Science
Languages : en
Pages : 542

Book Description
This is a book about the Hilbert space formulation of quantum mechanics and its measurement theory. It contains a synopsis of what became of the Mathematical Foundations of Quantum Mechanics since von Neumann’s classic treatise with this title. Fundamental non-classical features of quantum mechanics—indeterminacy and incompatibility of observables, unavoidable measurement disturbance, entanglement, nonlocality—are explicated and analysed using the tools of operational quantum theory. The book is divided into four parts: 1. Mathematics provides a systematic exposition of the Hilbert space and operator theoretic tools and relevant measure and integration theory leading to the Naimark and Stinespring dilation theorems; 2. Elements develops the basic concepts of quantum mechanics and measurement theory with a focus on the notion of approximate joint measurability; 3. Realisations offers in-depth studies of the fundamental observables of quantum mechanics and some of their measurement implementations; and 4. Foundations discusses a selection of foundational topics (quantum-classical contrast, Bell nonlocality, measurement limitations, measurement problem, operational axioms) from a measurement theoretic perspective. The book is addressed to physicists, mathematicians and philosophers of physics with an interest in the mathematical and conceptual foundations of quantum physics, specifically from the perspective of measurement theory.

Quantum Measurement

Quantum Measurement PDF Author: Paul Busch
Publisher: Springer
ISBN: 331943389X
Category : Science
Languages : en
Pages : 542

Book Description
This is a book about the Hilbert space formulation of quantum mechanics and its measurement theory. It contains a synopsis of what became of the Mathematical Foundations of Quantum Mechanics since von Neumann’s classic treatise with this title. Fundamental non-classical features of quantum mechanics—indeterminacy and incompatibility of observables, unavoidable measurement disturbance, entanglement, nonlocality—are explicated and analysed using the tools of operational quantum theory. The book is divided into four parts: 1. Mathematics provides a systematic exposition of the Hilbert space and operator theoretic tools and relevant measure and integration theory leading to the Naimark and Stinespring dilation theorems; 2. Elements develops the basic concepts of quantum mechanics and measurement theory with a focus on the notion of approximate joint measurability; 3. Realisations offers in-depth studies of the fundamental observables of quantum mechanics and some of their measurement implementations; and 4. Foundations discusses a selection of foundational topics (quantum-classical contrast, Bell nonlocality, measurement limitations, measurement problem, operational axioms) from a measurement theoretic perspective. The book is addressed to physicists, mathematicians and philosophers of physics with an interest in the mathematical and conceptual foundations of quantum physics, specifically from the perspective of measurement theory.

Quantum Measurement Theory and its Applications

Quantum Measurement Theory and its Applications PDF Author: Kurt Jacobs
Publisher: Cambridge University Press
ISBN: 1139992198
Category : Science
Languages : en
Pages : 982

Book Description
Recent experimental advances in the control of quantum superconducting circuits, nano-mechanical resonators and photonic crystals has meant that quantum measurement theory is now an indispensable part of the modelling and design of experimental technologies. This book, aimed at graduate students and researchers in physics, gives a thorough introduction to the basic theory of quantum measurement and many of its important modern applications. Measurement and control is explicitly treated in superconducting circuits and optical and opto-mechanical systems, and methods for deriving the Hamiltonians of superconducting circuits are introduced in detail. Further applications covered include feedback control, metrology, open systems and thermal environments, Maxwell's demon, and the quantum-to-classical transition.

Quantum Measurement and Control

Quantum Measurement and Control PDF Author: Howard M. Wiseman
Publisher: Cambridge University Press
ISBN: 0521804426
Category : Mathematics
Languages : en
Pages : 477

Book Description
Modern quantum measurement for graduate students and researchers in quantum information, quantum metrology, quantum control and related fields.

Quantum Measurement

Quantum Measurement PDF Author: Vladimir B. Braginsky
Publisher: Cambridge University Press
ISBN: 9780521484138
Category : Science
Languages : en
Pages : 216

Book Description
This book is an up-to-date introduction to the quantum theory of measurement, a fast developing field of intense current interest to scientists and engineers for its potential high-technology applications. It is also a subject of importance to students for its central role in the foundations of quantum mechanics. Although the main principles of the field were elaborated in the 1930s by Bohr, Schrodinger, Heisenberg, von Neumann and Mandelstam, it was not until the 1980s that technology became sufficiently advanced to allow its application in real experiments. Quantum measurements is now central to many ultra-high technology developments, such as squeezed light, single atom traps, and searches for gravitational radiation. It is also considered to have great promise for computer science and engineering, particularly for its applications in information processing and transfer. The book contains a pedagogical introduction to the relevant theory written at a level accessible to those with only a modest background in quantum mechanics. It then goes on to discuss aspects of the design of practical quantum measurement systems. This book is essential reading for all scientists and engineers interested in the potential applications of technology near the quantum limit. It will also serve as an ideal supplement to standard quantum mechanics textbooks at the advanced undergraduate or graduate level.

Local Quantum Measurement and Relativity

Local Quantum Measurement and Relativity PDF Author: Christian Beck
Publisher: Springer Nature
ISBN: 3030675335
Category : Science
Languages : en
Pages : 392

Book Description
This book treats various aspects of the quantum theory of measurement, partially in a relativistic framework. Measurement(-like) processes in quantum theory are identified and analysed; and the quantum operator formalism is derived in full generality without postulating operators as observables. Consistency conditions are derived, expressing the requirement of Lorentz-frame independence of outcomes of spacelike separated measurements and implying the impossibility of using quantum nonlocality to send signals faster than light. Local commutativity is scrutinized. The localization problem of relativistic quantum theory is studied, including comprehensive derivation of the theorems of Hegerfeld, Malament and Reeh-Schlieder. Finally, the quantum formalism is derived from the dynamics of particles with definite positions in Bohmian mechanics.

Time's Arrows and Quantum Measurement

Time's Arrows and Quantum Measurement PDF Author: Lawrence S. Schulman
Publisher: Cambridge University Press
ISBN: 9780521567756
Category : Science
Languages : en
Pages : 370

Book Description
An introduction to the arrow of time and a new, related, theory of quantum measurement.

Quantum Measure Theory

Quantum Measure Theory PDF Author: J. Hamhalter
Publisher: Springer Science & Business Media
ISBN: 9401701199
Category : Mathematics
Languages : en
Pages : 412

Book Description
This book is the first systematic treatment of measures on projection lattices of von Neumann algebras. It presents significant recent results in this field. One part is inspired by the Generalized Gleason Theorem on extending measures on the projection lattices of von Neumann algebras to linear functionals. Applications of this principle to various problems in quantum physics are considered (hidden variable problem, Wigner type theorems, decoherence functional, etc.). Another part of the monograph deals with a fascinating interplay of algebraic properties of the projection lattice with the continuity of measures (the analysis of Jauch-Piron states, independence conditions in quantum field theory, etc.). These results have no direct analogy in the standard measure and probability theory. On the theoretical physics side, they are instrumental in recovering technical assumptions of the axiomatics of quantum theories only by considering algebraic properties of finitely additive measures (states) on quantum propositions.

Quantum Mechanics and Experience

Quantum Mechanics and Experience PDF Author: David Z. ALBERT
Publisher: Harvard University Press
ISBN: 0674020146
Category : Science
Languages : en
Pages : 219

Book Description
This account of the foundations of quantum mechanics is an introduction accessible to anyone with high school mathematics, and provides a rigorous discussion of important recent advances in the understanding of quantum physics, including theories put forward by the author himself.

Quantum Trajectories and Measurements in Continuous Time

Quantum Trajectories and Measurements in Continuous Time PDF Author: Alberto Barchielli
Publisher: Springer Science & Business Media
ISBN: 3642012973
Category : Mathematics
Languages : en
Pages : 331

Book Description
This course-based monograph introduces the reader to the theory of continuous measurements in quantum mechanics and provides some benchmark applications. The approach chosen, quantum trajectory theory, is based on the stochastic Schrödinger and master equations, which determine the evolution of the a-posteriori state of a continuously observed quantum system and give the distribution of the measurement output. The present introduction is restricted to finite-dimensional quantum systems and diffusive outputs. Two appendices introduce the tools of probability theory and quantum measurement theory which are needed for the theoretical developments in the first part of the book. First, the basic equations of quantum trajectory theory are introduced, with all their mathematical properties, starting from the existence and uniqueness of their solutions. This makes the text also suitable for other applications of the same stochastic differential equations in different fields such as simulations of master equations or dynamical reduction theories. In the next step the equivalence between the stochastic approach and the theory of continuous measurements is demonstrated. To conclude the theoretical exposition, the properties of the output of the continuous measurement are analyzed in detail. This is a stochastic process with its own distribution, and the reader will learn how to compute physical quantities such as its moments and its spectrum. In particular this last concept is introduced with clear and explicit reference to the measurement process. The two-level atom is used as the basic prototype to illustrate the theory in a concrete application. Quantum phenomena appearing in the spectrum of the fluorescence light, such as Mollow’s triplet structure, squeezing of the fluorescence light, and the linewidth narrowing, are presented. Last but not least, the theory of quantum continuous measurements is the natural starting point to develop a feedback control theory in continuous time for quantum systems. The two-level atom is again used to introduce and study an example of feedback based on the observed output.

Quantum Measurements and Decoherence

Quantum Measurements and Decoherence PDF Author: M. Mensky
Publisher: Springer Science & Business Media
ISBN: 9401595666
Category : Science
Languages : en
Pages : 238

Book Description
Quantum measurement (Le., a measurement which is sufficiently precise for quantum effects to be essential) was always one of the most impor tant points in quantum mechanics because it most evidently revealed the difference between quantum and classical physics. Now quantum measure ment is again under active investigation, first of all because of the practical necessity of dealing with highly precise and complicated measurements. The nature of quantum measurement has become understood much bet ter during this new period of activity, the understanding being expressed by the concept of decoherence. This term means a physical process lead ing from a pure quantum state (wave function) of the system prior to the measurement to its state after the measurement which includes classical elements. More concretely, decoherence occurs as a result of the entangle ment of the measured system with its environment and results in the loss of phase relations between components of the wave function of the measured system. Decoherence is essentially nothing else than quantum measurement, but considered from the point of view of its physical mechanism and resolved in time. The present book is devoted to the two concepts of quantum measure ment and decoherence and to their interrelation, especially in the context of continuous quantum measurement.