Representations and Techniques for 3D Object Recognition and Scene Interpretation PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Representations and Techniques for 3D Object Recognition and Scene Interpretation PDF full book. Access full book title Representations and Techniques for 3D Object Recognition and Scene Interpretation by Derek Hoiem. Download full books in PDF and EPUB format.

Representations and Techniques for 3D Object Recognition and Scene Interpretation

Representations and Techniques for 3D Object Recognition and Scene Interpretation PDF Author: Derek Hoiem
Publisher: Morgan & Claypool Publishers
ISBN: 160845729X
Category : Technology & Engineering
Languages : en
Pages : 171

Book Description
One of the grand challenges of artificial intelligence is to enable computers to interpret 3D scenes and objects from imagery. This book organizes and introduces major concepts in 3D scene and object representation and inference from still images, with a focus on recent efforts to fuse models of geometry and perspective with statistical machine learning. The book is organized into three sections: (1) Interpretation of Physical Space; (2) Recognition of 3D Objects; and (3) Integrated 3D Scene Interpretation. The first discusses representations of spatial layout and techniques to interpret physical scenes from images. The second section introduces representations for 3D object categories that account for the intrinsically 3D nature of objects and provide robustness to change in viewpoints. The third section discusses strategies to unite inference of scene geometry and object pose and identity into a coherent scene interpretation. Each section broadly surveys important ideas from cognitive science and artificial intelligence research, organizes and discusses key concepts and techniques from recent work in computer vision, and describes a few sample approaches in detail. Newcomers to computer vision will benefit from introductions to basic concepts, such as single-view geometry and image classification, while experts and novices alike may find inspiration from the book's organization and discussion of the most recent ideas in 3D scene understanding and 3D object recognition. Specific topics include: mathematics of perspective geometry; visual elements of the physical scene, structural 3D scene representations; techniques and features for image and region categorization; historical perspective, computational models, and datasets and machine learning techniques for 3D object recognition; inferences of geometrical attributes of objects, such as size and pose; and probabilistic and feature-passing approaches for contextual reasoning about 3D objects and scenes. Table of Contents: Background on 3D Scene Models / Single-view Geometry / Modeling the Physical Scene / Categorizing Images and Regions / Examples of 3D Scene Interpretation / Background on 3D Recognition / Modeling 3D Objects / Recognizing and Understanding 3D Objects / Examples of 2D 1/2 Layout Models / Reasoning about Objects and Scenes / Cascades of Classifiers / Conclusion and Future Directions

Representations and Techniques for 3D Object Recognition and Scene Interpretation

Representations and Techniques for 3D Object Recognition and Scene Interpretation PDF Author: Derek Hoiem
Publisher: Morgan & Claypool Publishers
ISBN: 160845729X
Category : Technology & Engineering
Languages : en
Pages : 171

Book Description
One of the grand challenges of artificial intelligence is to enable computers to interpret 3D scenes and objects from imagery. This book organizes and introduces major concepts in 3D scene and object representation and inference from still images, with a focus on recent efforts to fuse models of geometry and perspective with statistical machine learning. The book is organized into three sections: (1) Interpretation of Physical Space; (2) Recognition of 3D Objects; and (3) Integrated 3D Scene Interpretation. The first discusses representations of spatial layout and techniques to interpret physical scenes from images. The second section introduces representations for 3D object categories that account for the intrinsically 3D nature of objects and provide robustness to change in viewpoints. The third section discusses strategies to unite inference of scene geometry and object pose and identity into a coherent scene interpretation. Each section broadly surveys important ideas from cognitive science and artificial intelligence research, organizes and discusses key concepts and techniques from recent work in computer vision, and describes a few sample approaches in detail. Newcomers to computer vision will benefit from introductions to basic concepts, such as single-view geometry and image classification, while experts and novices alike may find inspiration from the book's organization and discussion of the most recent ideas in 3D scene understanding and 3D object recognition. Specific topics include: mathematics of perspective geometry; visual elements of the physical scene, structural 3D scene representations; techniques and features for image and region categorization; historical perspective, computational models, and datasets and machine learning techniques for 3D object recognition; inferences of geometrical attributes of objects, such as size and pose; and probabilistic and feature-passing approaches for contextual reasoning about 3D objects and scenes. Table of Contents: Background on 3D Scene Models / Single-view Geometry / Modeling the Physical Scene / Categorizing Images and Regions / Examples of 3D Scene Interpretation / Background on 3D Recognition / Modeling 3D Objects / Recognizing and Understanding 3D Objects / Examples of 2D 1/2 Layout Models / Reasoning about Objects and Scenes / Cascades of Classifiers / Conclusion and Future Directions

Representations and Techniques for 3D Object Recognition and Scene Interpretation

Representations and Techniques for 3D Object Recognition and Scene Interpretation PDF Author: Derek Santhanam
Publisher: Springer Nature
ISBN: 3031015576
Category : Computers
Languages : en
Pages : 147

Book Description
One of the grand challenges of artificial intelligence is to enable computers to interpret 3D scenes and objects from imagery. This book organizes and introduces major concepts in 3D scene and object representation and inference from still images, with a focus on recent efforts to fuse models of geometry and perspective with statistical machine learning. The book is organized into three sections: (1) Interpretation of Physical Space; (2) Recognition of 3D Objects; and (3) Integrated 3D Scene Interpretation. The first discusses representations of spatial layout and techniques to interpret physical scenes from images. The second section introduces representations for 3D object categories that account for the intrinsically 3D nature of objects and provide robustness to change in viewpoints. The third section discusses strategies to unite inference of scene geometry and object pose and identity into a coherent scene interpretation. Each section broadly surveys important ideas from cognitive science and artificial intelligence research, organizes and discusses key concepts and techniques from recent work in computer vision, and describes a few sample approaches in detail. Newcomers to computer vision will benefit from introductions to basic concepts, such as single-view geometry and image classification, while experts and novices alike may find inspiration from the book's organization and discussion of the most recent ideas in 3D scene understanding and 3D object recognition. Specific topics include: mathematics of perspective geometry; visual elements of the physical scene, structural 3D scene representations; techniques and features for image and region categorization; historical perspective, computational models, and datasets and machine learning techniques for 3D object recognition; inferences of geometrical attributes of objects, such as size and pose; and probabilistic and feature-passing approaches for contextual reasoning about 3D objects and scenes. Table of Contents: Background on 3D Scene Models / Single-view Geometry / Modeling the Physical Scene / Categorizing Images and Regions / Examples of 3D Scene Interpretation / Background on 3D Recognition / Modeling 3D Objects / Recognizing and Understanding 3D Objects / Examples of 2D 1/2 Layout Models / Reasoning about Objects and Scenes / Cascades of Classifiers / Conclusion and Future Directions

3D Shape Analysis

3D Shape Analysis PDF Author: Hamid Laga
Publisher: John Wiley & Sons
ISBN: 1119405106
Category : Mathematics
Languages : en
Pages : 368

Book Description
An in-depth description of the state-of-the-art of 3D shape analysis techniques and their applications This book discusses the different topics that come under the title of "3D shape analysis". It covers the theoretical foundations and the major solutions that have been presented in the literature. It also establishes links between solutions proposed by different communities that studied 3D shape, such as mathematics and statistics, medical imaging, computer vision, and computer graphics. The first part of 3D Shape Analysis: Fundamentals, Theory, and Applications provides a review of the background concepts such as methods for the acquisition and representation of 3D geometries, and the fundamentals of geometry and topology. It specifically covers stereo matching, structured light, and intrinsic vs. extrinsic properties of shape. Parts 2 and 3 present a range of mathematical and algorithmic tools (which are used for e.g., global descriptors, keypoint detectors, local feature descriptors, and algorithms) that are commonly used for the detection, registration, recognition, classification, and retrieval of 3D objects. Both also place strong emphasis on recent techniques motivated by the spread of commodity devices for 3D acquisition. Part 4 demonstrates the use of these techniques in a selection of 3D shape analysis applications. It covers 3D face recognition, object recognition in 3D scenes, and 3D shape retrieval. It also discusses examples of semantic applications and cross domain 3D retrieval, i.e. how to retrieve 3D models using various types of modalities, e.g. sketches and/or images. The book concludes with a summary of the main ideas and discussions of the future trends. 3D Shape Analysis: Fundamentals, Theory, and Applications is an excellent reference for graduate students, researchers, and professionals in different fields of mathematics, computer science, and engineering. It is also ideal for courses in computer vision and computer graphics, as well as for those seeking 3D industrial/commercial solutions.

Machine Vision for Three-Dimensional Scenes

Machine Vision for Three-Dimensional Scenes PDF Author: Herbert Freeman
Publisher: Elsevier
ISBN: 0323150632
Category : Technology & Engineering
Languages : en
Pages : 432

Book Description
Machine Vision for Three-Dimensional Scenes contains the proceedings of the workshop "Machine Vision - Acquiring and Interpreting the 3D Scene" sponsored by the Center for Computer Aids for Industrial Productivity (CAIP) at Rutgers University and held in April 1989 in New Brunswick, New Jersey. The papers explore the applications of machine vision in image acquisition and 3D scene interpretation and cover topics such as segmentation of multi-sensor images; the placement of sensors to minimize occlusion; and the use of light striping to obtain range data. Comprised of 14 chapters, this book opens with a discussion on 3D object recognition and the problems that arise when dealing with large object databases, along with solutions to these problems. The reader is then introduced to the free-form surface matching problem and object recognition by constrained search. The following chapters address the problem of machine vision inspection, paying particular attention to the use of eye tracking to train a vision system; images of 3D scenes and the attendant problems of image understanding; the problem of object motion; and real-time range mapping. The final chapter assesses the relationship between the developing machine vision technology and the marketplace. This monograph will be of interest to practitioners in the fields of computer science and applied mathematics.

Graph Representation Learning

Graph Representation Learning PDF Author: William L. William L. Hamilton
Publisher: Springer Nature
ISBN: 3031015886
Category : Computers
Languages : en
Pages : 141

Book Description
Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.

Advances in Visual Computing

Advances in Visual Computing PDF Author: George Bebis
Publisher: Springer
ISBN: 3319508326
Category : Computers
Languages : en
Pages : 631

Book Description
The two volume set LNCS 10072 and LNCS 10073 constitutes the refereed proceedings of the 12th International Symposium on Visual Computing, ISVC 2016, held in Las Vegas, NV, USA in December 2016. The 102 revised full papers and 34 poster papers presented in this book were carefully reviewed and selected from 220 submissions. The papers are organized in topical sections: Part I (LNCS 10072) comprises computational bioimaging; computer graphics; motion and tracking; segmentation; pattern recognition; visualization; 3D mapping; modeling and surface reconstruction; advancing autonomy for aerial robotics; medical imaging; virtual reality; computer vision as a service; visual perception and robotic systems; and biometrics. Part II (LNCS 9475): applications; visual surveillance; computer graphics; and virtual reality.

Outils d’analyse vidéo : pour une pleine exploitation des données de la vidéoprotection

Outils d’analyse vidéo : pour une pleine exploitation des données de la vidéoprotection PDF Author: DUFOUR Jean-Yves
Publisher: Lavoisier
ISBN: 2746288907
Category :
Languages : en
Pages : 386

Book Description
L’utilisation croissante de la vidéoprotection rend nécessaire la mise en place de fonctions d’analyse vidéo pour alléger voire automatiser des tâches aujourd’hui entièrement réalisées par des opérateurs. Après avoir dressé un panorama des avancées et des perspectives en analyse d’image, cet ouvrage détaille les principales fonctions d’analyse vidéo, comme la détection, le suivi et la reconnaissance d’objets d’intérêt (personnes ou véhicules) ou les fonctions de « haut-niveau » visant à interpréter les scènes observées (évènements, comportements, nature de la scène...). Les besoins sont illustrés sous l’angle de deux applications majeures, la sécurité des transports et l’investigation. Les contraintes d’ordres juridique et éthique sont présentées, ainsi que les caractéristiques des données vidéo traitées, au travers des caméras et des méthodes de compression utilisées. La problématique de l’évaluation de performance, tant au niveau opérationnel qu’au niveau des fonctions d’analyse, est également exposée.

A Concise Introduction to Models and Methods for Automated Planning

A Concise Introduction to Models and Methods for Automated Planning PDF Author: Hector Radanovic
Publisher: Springer Nature
ISBN: 3031015649
Category : Computers
Languages : en
Pages : 132

Book Description
Planning is the model-based approach to autonomous behavior where the agent behavior is derived automatically from a model of the actions, sensors, and goals. The main challenges in planning are computational as all models, whether featuring uncertainty and feedback or not, are intractable in the worst case when represented in compact form. In this book, we look at a variety of models used in AI planning, and at the methods that have been developed for solving them. The goal is to provide a modern and coherent view of planning that is precise, concise, and mostly self-contained, without being shallow. For this, we make no attempt at covering the whole variety of planning approaches, ideas, and applications, and focus on the essentials. The target audience of the book are students and researchers interested in autonomous behavior and planning from an AI, engineering, or cognitive science perspective. Table of Contents: Preface / Planning and Autonomous Behavior / Classical Planning: Full Information and Deterministic Actions / Classical Planning: Variations and Extensions / Beyond Classical Planning: Transformations / Planning with Sensing: Logical Models / MDP Planning: Stochastic Actions and Full Feedback / POMDP Planning: Stochastic Actions and Partial Feedback / Discussion / Bibliography / Author's Biography

Analysis and Interpretation of Range Images

Analysis and Interpretation of Range Images PDF Author: Ramesh C. Jain
Publisher: Springer Science & Business Media
ISBN: 1461233607
Category : Computers
Languages : en
Pages : 393

Book Description
Computer vision researchers have been frustrated in their attempts to automatically derive depth information from conventional two-dimensional intensity images. Research on "shape from texture", "shape from shading", and "shape from focus" is still in a laboratory stage and had not seen much use in commercial machine vision systems. A range image or a depth map contains explicit information about the distance from the sensor to the object surfaces within the field of view in the scene. Information about "surface geometry" which is important for, say, three-dimensional object recognition is more easily extracted from "2 1/2 D" range images than from "2D" intensity images. As a result, both active sensors such as laser range finders and passive techniques such as multi-camera stereo vision are being increasingly utilized by vision researchers to solve a variety of problems. This book contains chapters written by distinguished computer vision researchers covering the following areas: Overview of 3D Vision Range Sensing Geometric Processing Object Recognition Navigation Inspection Multisensor Fusion A workshop report, written by the editors, also appears in the book. It summarizes the state of the art and proposes future research directions in range image sensing, processing, interpretation, and applications. The book also contains an extensive, up-to-date bibliography on the above topics. This book provides a unique perspective on the problem of three-dimensional sensing and processing; it is the only comprehensive collection of papers devoted to range images. Both academic researchers interested in research issues in 3D vision and industrial engineers in search of solutions to particular problems will find this a useful reference book.

Intelligent Systems

Intelligent Systems PDF Author: Cornelius T. Leondes
Publisher: CRC Press
ISBN: 1420040812
Category : Technology & Engineering
Languages : en
Pages : 2400

Book Description
Intelligent systems, or artificial intelligence technologies, are playing an increasing role in areas ranging from medicine to the major manufacturing industries to financial markets. The consequences of flawed artificial intelligence systems are equally wide ranging and can be seen, for example, in the programmed trading-driven stock market crash of October 19, 1987. Intelligent Systems: Technology and Applications, Six Volume Set connects theory with proven practical applications to provide broad, multidisciplinary coverage in a single resource. In these volumes, international experts present case-study examples of successful practical techniques and solutions for diverse applications ranging from robotic systems to speech and signal processing, database management, and manufacturing.