The Art of Theoretical Biology PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download The Art of Theoretical Biology PDF full book. Access full book title The Art of Theoretical Biology by Franziska Matthäus. Download full books in PDF and EPUB format.

The Art of Theoretical Biology

The Art of Theoretical Biology PDF Author: Franziska Matthäus
Publisher: Springer Nature
ISBN: 3030334716
Category : Science
Languages : en
Pages : 152

Book Description
This beautifully crafted book collects images, which were created during the process of research in all fields of theoretical biology. Data analysis, numerical treatment of a model, or simulation results yield stunning images, which represent pieces of art just by themselves. The approach of the book is to present for each piece of visualization a lucid synopsis of the scientific background as well as an outline of the artistic vision.

The Art of Theoretical Biology

The Art of Theoretical Biology PDF Author: Franziska Matthäus
Publisher: Springer Nature
ISBN: 3030334716
Category : Science
Languages : en
Pages : 152

Book Description
This beautifully crafted book collects images, which were created during the process of research in all fields of theoretical biology. Data analysis, numerical treatment of a model, or simulation results yield stunning images, which represent pieces of art just by themselves. The approach of the book is to present for each piece of visualization a lucid synopsis of the scientific background as well as an outline of the artistic vision.

Quantitative Biology

Quantitative Biology PDF Author: Brian Munsky
Publisher: MIT Press
ISBN: 0262038080
Category : Science
Languages : en
Pages : 729

Book Description
An introduction to the quantitative modeling of biological processes, presenting modeling approaches, methodology, practical algorithms, software tools, and examples of current research. The quantitative modeling of biological processes promises to expand biological research from a science of observation and discovery to one of rigorous prediction and quantitative analysis. The rapidly growing field of quantitative biology seeks to use biology's emerging technological and computational capabilities to model biological processes. This textbook offers an introduction to the theory, methods, and tools of quantitative biology. The book first introduces the foundations of biological modeling, focusing on some of the most widely used formalisms. It then presents essential methodology for model-guided analyses of biological data, covering such methods as network reconstruction, uncertainty quantification, and experimental design; practical algorithms and software packages for modeling biological systems; and specific examples of current quantitative biology research and related specialized methods. Most chapters offer problems, progressing from simple to complex, that test the reader's mastery of such key techniques as deterministic and stochastic simulations and data analysis. Many chapters include snippets of code that can be used to recreate analyses and generate figures related to the text. Examples are presented in the three popular computing languages: Matlab, R, and Python. A variety of online resources supplement the the text. The editors are long-time organizers of the Annual q-bio Summer School, which was founded in 2007. Through the school, the editors have helped to train more than 400 visiting students in Los Alamos, NM, Santa Fe, NM, San Diego, CA, Albuquerque, NM, and Fort Collins, CO. This book is inspired by the school's curricula, and most of the contributors have participated in the school as students, lecturers, or both. Contributors John H. Abel, Roberto Bertolusso, Daniela Besozzi, Michael L. Blinov, Clive G. Bowsher, Fiona A. Chandra, Paolo Cazzaniga, Bryan C. Daniels, Bernie J. Daigle, Jr., Maciej Dobrzynski, Jonathan P. Doye, Brian Drawert, Sean Fancer, Gareth W. Fearnley, Dirk Fey, Zachary Fox, Ramon Grima, Andreas Hellander, Stefan Hellander, David Hofmann, Damian Hernandez, William S. Hlavacek, Jianjun Huang, Tomasz Jetka, Dongya Jia, Mohit Kumar Jolly, Boris N. Kholodenko, Markek Kimmel, Michał Komorowski, Ganhui Lan, Heeseob Lee, Herbert Levine, Leslie M Loew, Jason G. Lomnitz, Ard A. Louis, Grant Lythe, Carmen Molina-París, Ion I. Moraru, Andrew Mugler, Brian Munsky, Joe Natale, Ilya Nemenman, Karol Nienałtowski, Marco S. Nobile, Maria Nowicka, Sarah Olson, Alan S. Perelson, Linda R. Petzold, Sreenivasan Ponnambalam, Arya Pourzanjani, Ruy M. Ribeiro, William Raymond, William Raymond, Herbert M. Sauro, Michael A. Savageau, Abhyudai Singh, James C. Schaff, Boris M. Slepchenko, Thomas R. Sokolowski, Petr Šulc, Andrea Tangherloni, Pieter Rein ten Wolde, Philipp Thomas, Karen Tkach Tuzman, Lev S. Tsimring, Dan Vasilescu, Margaritis Voliotis, Lisa Weber

The Role of Theory in Advancing 21st-Century Biology

The Role of Theory in Advancing 21st-Century Biology PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 030913417X
Category : Science
Languages : en
Pages : 208

Book Description
Although its importance is not always recognized, theory is an integral part of all biological research. Biologists' theoretical and conceptual frameworks inform every step of their research, affecting what experiments they do, what techniques and technologies they develop and use, and how they interpret their data. By examining how theory can help biologists answer questions like "What are the engineering principles of life?" or "How do cells really work?" the report shows how theory synthesizes biological knowledge from the molecular level to the level of whole ecosystems. The book concludes that theory is already an inextricable thread running throughout the practice of biology; but that explicitly giving theory equal status with other components of biological research could help catalyze transformative research that will lead to creative, dynamic, and innovative advances in our understanding of life.

Theoretical Biology

Theoretical Biology PDF Author: Brian C. Goodwin
Publisher:
ISBN: 9780801845192
Category : Science
Languages : en
Pages : 0

Book Description
How does complexity of development, structure, and function of organisms emerge from the relative simplicity of biochemistry and genetics? In Theoretical Biology, Brian Goodwin and Peter Saunders bring together a distinguished group of contributors to provide a broad-based yet coherent inquiry into biological processes. In the spirit of C. H. Waddington's Towards a Theoretical Biology, the authors seek to establish the generative principles that apply throughout the field of biology to give a unifying logical structure to diverse empirical phenomena. Major topics include self-organization in complex systems; order and adaptability in genetic networks; development and evolution; and the relevance of physics and mathematics to biology.

The Life Organic

The Life Organic PDF Author: Erik L. Peterson
Publisher: University of Pittsburgh Press
ISBN: 082298198X
Category : Science
Languages : en
Pages : 328

Book Description
As scientists debated the nature of life in the nineteenth century, two theories predominated: vitalism, which suggested that living things contained a “vital spark,” and mechanism, the idea that animals and humans differed from nonliving things only in their degree of complexity. Erik Peterson tells the forgotten story of the pursuit of a “third way’ in biology, known by many names, including “the organic philosophy,” which gave rise to C. H. Waddington’s work in the subfield of epigenetics: an alternative to standard genetics and evolutionary biology that captured the attention of notable scientists from Francis Crick to Stephen Jay Gould. The Life Organic chronicles the influential biologists, mathematicians, philosophers, and biochemists from both sides of the Atlantic who formed Joseph Needham’s Theoretical Biology Club, defined and refined “third way” thinking through the 1930s, and laid the groundwork for some of the most cutting-edge achievements in biology today. By tracing the persistence of organicism into the twenty-first century, this book also raises significant questions about how we should model the development of the discipline of biology going forward.

An Introduction to Systems Biology

An Introduction to Systems Biology PDF Author: Uri Alon
Publisher: CRC Press
ISBN: 1584886420
Category : Mathematics
Languages : en
Pages : 324

Book Description
Thorough and accessible, this book presents the design principles of biological systems, and highlights the recurring circuit elements that make up biological networks. It provides a simple mathematical framework which can be used to understand and even design biological circuits. The textavoids specialist terms, focusing instead on several well-studied biological systems that concisely demonstrate key principles. An Introduction to Systems Biology: Design Principles of Biological Circuits builds a solid foundation for the intuitive understanding of general principles. It encourages the reader to ask why a system is designed in a particular way and then proceeds to answer with simplified models.

Origination of Organismal Form

Origination of Organismal Form PDF Author: Gerd B. Muller
Publisher: MIT Press
ISBN: 9780262134194
Category : Science
Languages : en
Pages : 354

Book Description
A more comprehensive version of evolutionary theory that focuses as much on the origin of biological form as on its diversification. The field of evolutionary biology arose from the desire to understand the origin and diversity of biological forms. In recent years, however, evolutionary genetics, with its focus on the modification and inheritance of presumed genetic programs, has all but overwhelmed other aspects of evolutionary biology. This has led to the neglect of the study of the generative origins of biological form. Drawing on work from developmental biology, paleontology, developmental and population genetics, cancer research, physics, and theoretical biology, this book explores the multiple factors responsible for the origination of biological form. It examines the essential problems of morphological evolution—why, for example, the basic body plans of nearly all metazoans arose within a relatively short time span, why similar morphological design motifs appear in phylogenetically independent lineages, and how new structural elements are added to the body plan of a given phylogenetic lineage. It also examines discordances between genetic and phenotypic change, the physical determinants of morphogenesis, and the role of epigenetic processes in evolution. The book discusses these and other topics within the framework of evolutionary developmental biology, a new research agenda that concerns the interaction of development and evolution in the generation of biological form. By placing epigenetic processes, rather than gene sequence and gene expression changes, at the center of morphological origination, this book points the way to a more comprehensive theory of evolution.

Levels of Organization in the Biological Sciences

Levels of Organization in the Biological Sciences PDF Author: Daniel S. Brooks
Publisher: MIT Press
ISBN: 0262362252
Category : Technology & Engineering
Languages : en
Pages : 337

Book Description
Scientific philosophers examine the nature and significance of levels of organization, a core structural principle in the biological sciences. This volume examines the idea of levels of organization as a distinct object of investigation, considering its merits as a core organizational principle for the scientific image of the natural world. It approaches levels of organization--roughly, the idea that the natural world is segregated into part-whole relationships of increasing spatiotemporal scale and complexity--in terms of its roles in scientific reasoning as a dynamic, open-ended idea capable of performing multiple overlapping functions in distinct empirical settings. The contributors--scientific philosophers with longstanding ties to the biological sciences--discuss topics including the philosophical and scientific contexts for an inquiry into levels; whether the concept can actually deliver on its organizational promises; the role of levels in the development and evolution of complex systems; conditional independence and downward causation; and the extension of the concept into the sociocultural realm. Taken together, the contributions embrace the diverse usages of the term as aspects of the big picture of levels of organization. Contributors Jan Baedke, Robert W. Batterman, Daniel S. Brooks, James DiFrisco, Markus I. Eronen, Carl Gillett, Sara Green, James Griesemer, Alan C. Love, Angela Potochnik, Thomas Reydon, Ilya Tëmkin, Jon Umerez, William C. Wimsatt, James Woodward

The Routledge Companion to Biology in Art and Architecture

The Routledge Companion to Biology in Art and Architecture PDF Author: Charissa Terranova
Publisher: Routledge
ISBN: 1317419502
Category : Architecture
Languages : en
Pages : 761

Book Description
The Routledge Companion to Biology in Art and Architecture collects thirty essays from a transdisciplinary array of experts on biology in art and architecture. The book presents a diversity of hybrid art-and-science thinking, revealing how science and culture are interwoven. The book situates bioart and bioarchitecture within an expanded field of biology in art, architecture, and design. It proposes an emergent field of biocreativity and outlines its historical and theoretical foundations from the perspective of artists, architects, designers, scientists, historians, and theoreticians. Includes over 150 black and white images.

Modularity

Modularity PDF Author: Werner Callebaut
Publisher: MIT Press
ISBN: 9780262033268
Category : Computers
Languages : en
Pages : 480

Book Description
Modularity—the attempt to understand systems as integrations of partially independent and interacting units—is today a dominant theme in the life sciences, cognitive science, and computer science. The concept goes back at least implicitly to the Scientific (or Copernican) Revolution, and can be found behind later theories of phrenology, physiology, and genetics; moreover, art, engineering, and mathematics rely on modular design principles. This collection broadens the scientific discussion of modularity by bringing together experts from a variety of disciplines, including artificial life, cognitive science, economics, evolutionary computation, developmental and evolutionary biology, linguistics, mathematics, morphology, paleontology, physics, theoretical chemistry, philosophy, and the arts. The contributors debate and compare the uses of modularity, discussing the different disciplinary contexts of "modular thinking" in general (including hierarchical organization, near-decomposability, quasi-independence, and recursion) or of more specialized concepts (including character complex, gene family, encapsulation, and mosaic evolution); what modules are, why and how they develop and evolve, and the implication for the research agenda in the disciplines involved; and how to bring about useful cross-disciplinary knowledge transfer on the topic. The book includes a foreword by the late Herbert A. Simon addressing the role of near-decomposability in understanding complex systems. Contributors: Lee Altenberg, Lauren W. Ancel-Meyers, Carl Anderson, Robert B. Brandon, Angela D. Buscalioni, Raffaele Calabretta, Werner Callebaut, Anne De Joan, Rafael Delgado-Buscalioni, Gunther J. Eble, Walter Fontana, Fernand Gobet, Alicia de la Iglesia, Slavik V. Jablan, Luigi Marengo, Daniel W. McShea, Jason Mezey, D. Kimbrough Oller, Domenico Parisi, Corrado Pasquali, Diego Rasskin-Gutman, Gerhard Schlosser, Herbert A. Simon, Roger D. K. Thomas, Marco Valente, Boris M. Velichkovsky, Gunter P. Wagner, Rasmus G. Winter Vienna Series in Theoretical Biology