Genomic Messages PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Genomic Messages PDF full book. Access full book title Genomic Messages by George Annas. Download full books in PDF and EPUB format.

Genomic Messages

Genomic Messages PDF Author: George Annas
Publisher: HarperCollins
ISBN: 0062228277
Category : Health & Fitness
Languages : en
Pages : 173

Book Description
Two leaders in the field of genetics—a bioethicist-health lawyer and an obstetrician-gynecologist geneticist—answer the most pressing questions about the application of new genetics to our universal medicine and what personalized medicine means for individual healthcare. Breakthroughs in genetic research are changing modern medicine and pharmaceuticals. But what are these changes and how do they affect our individual care? Genomic Messages examines these groundbreaking changes and the questions they raise: What kind of specific medical innovation do we have to look forward to now and tomorrow? How will this “flood” of genetic messages change our lives, our interaction with our physicians and our healthcare system? Groundbreaking and provocative, Genomic Messages fuses the often conflicting worlds of medicine and law to provide information and insight that will impact the health choices of every one of us, from how medicine is practiced to concepts of privacy, confidentiality, and informed consent. Ultimately, it reveals how genetic information is changing how we think about ourselves, our health, and our future.

Genomic Messages

Genomic Messages PDF Author: George Annas
Publisher: HarperCollins
ISBN: 0062228277
Category : Health & Fitness
Languages : en
Pages : 173

Book Description
Two leaders in the field of genetics—a bioethicist-health lawyer and an obstetrician-gynecologist geneticist—answer the most pressing questions about the application of new genetics to our universal medicine and what personalized medicine means for individual healthcare. Breakthroughs in genetic research are changing modern medicine and pharmaceuticals. But what are these changes and how do they affect our individual care? Genomic Messages examines these groundbreaking changes and the questions they raise: What kind of specific medical innovation do we have to look forward to now and tomorrow? How will this “flood” of genetic messages change our lives, our interaction with our physicians and our healthcare system? Groundbreaking and provocative, Genomic Messages fuses the often conflicting worlds of medicine and law to provide information and insight that will impact the health choices of every one of us, from how medicine is practiced to concepts of privacy, confidentiality, and informed consent. Ultimately, it reveals how genetic information is changing how we think about ourselves, our health, and our future.

Collaborative Genomics Projects: A Comprehensive Guide

Collaborative Genomics Projects: A Comprehensive Guide PDF Author: Margi Sheth
Publisher: Academic Press
ISBN: 0128023686
Category : Science
Languages : en
Pages : 142

Book Description
Collaborative Genomics Projects: A Comprehensive Guide contains operational procedures, policy considerations, and the many lessons learned by The Cancer Genome Atlas Project. This book guides the reader through methods in patient sample acquisition, the establishment of data generation and analysis pipelines, data storage and dissemination, quality control, auditing, and reporting. This book is essential for those looking to set up or collaborate within a large-scale genomics research project. All authors are contributors to The Cancer Genome Atlas (TCGA) Program, a NIH- funded effort to generate a comprehensive catalog of genomic alterations in more than 35 cancer types. As the cost of genomic sequencing is decreasing, more and more researchers are leveraging genomic data to inform the biology of disease. The amount of genomic data generated is growing exponentially, and protocols need to be established for the long-term storage, dissemination, and regulation of this data for research. The book's authors create a complete handbook on the management of research projects involving genomic data as learned through the evolution of the TCGA program, a project that was primarily carried out in the US, but whose impact and lessons learned can be applied to international audiences. Establishes a framework for managing large-scale genomic research projects involving multiple collaborators Describes lessons learned through TCGA to prepare for potential roadblocks Evaluates policy considerations that are needed to avoid pitfalls Recommends strategies to make project management more efficient

Genetics and Genomics of the Triticeae

Genetics and Genomics of the Triticeae PDF Author: Catherine Feuillet
Publisher: Springer Science & Business Media
ISBN: 0387774890
Category : Science
Languages : en
Pages : 774

Book Description
Sequencing of the model plant genomes such as those of A. thaliana and rice has revolutionized our understanding of plant biology but it has yet to translate into the improvement of major crop species such as maize, wheat, or barley. Moreover, the comparative genomic studies in cereals that have been performed in the past decade have revealed the limits of conservation between rice and the other cereal genomes. This has necessitated the development of genomic resources and programs for maize, sorghum, wheat, and barley to serve as the foundation for future genome sequencing and the acceleration of genomic based improvement of these critically important crops. Cereals constitute over 50% of total crop production worldwide (http://www.fao.org/) and cereal seeds are one of the most important renewable resources for food, feed, and industrial raw materials. Crop species of the Triticeae tribe that comprise wheat, barley, and rye are essential components of human and domestic animal nutrition. With 17% of all crop area, wheat is the staple food for 40% of the world’s population, while barley ranks fifth in the world production. Their domestication in the Fertile Crescent 10,000 years ago ushered in the beginning of agriculture and signified an important breakthrough in the advancement of civilization. Rye is second after wheat among grains most commonly used in the production of bread and is also very important for mixed animal feeds. It can be cultivated in poor soils and climates that are generally not suitable for other cereals. Extensive genetics and cytogenetics studies performed in the Triticeae species over the last 50 years have led to the characterization of their chromosomal composition and origins and have supported intensive work to create new genetic resources. Cytogenetic studies in wheat have allowed the identification and characterization of the different homoeologous genomes and have demonstrated the utility of studying wheat genome evolution as a model for the analysis of polyploidization, a major force in the evolution of the eukaryotic genomes. Barley with its diploid genome shows high collinearity with the other Triticeae genomes and therefore serves as a good template for supporting genomic analyses in the wheat and rye genomes. The knowledge gained from genetic studies in the Triticeae has also been used to produce Triticale, the first human made hybrid crop that results from a cross between wheat and rye and combines the nutrition quality and productivity of wheat with the ruggedness of rye. Despite the economic importance of the Triticeae species and the need for accelerated crop improvement based on genomics studies, the size (1.7 Gb for the bread wheat genome, i.e., 5x the human genome and 40 times the rice genome), high repeat content (>80%), and complexity (polyploidy in wheat) of their genomes often have been considered too challenging for efficient molecular analysis and genetic improvement in these species. Consequently, Triticeae genomics has lagged behind the genomic advances of other cereal crops for many years. Recently, however, the situation has changed dramatically and robust genomic programs can be established in the Triticeae as a result of the convergence of several technology developments that have led to new, more efficient scientific capabilities and resources such as whole-genome and chromosome-specific BAC libraries, extensive EST collections, transformation systems, wild germplasm and mutant collections, as well as DNA chips. Currently, the Triticeae genomics "toolbox" is comprised of: - 9 publicly available BAC libraries from diploid (5), tetraploid (1) and hexaploid (3) wheat; 3 publicly available BAC libraries from barley and one BAC library from rye; - 3 wheat chromosome specific BAC libraries; - DNA chips including commercially available first generation chips from AFFYMETRIX containing 55’000 wheat and 22,000 barley genes; - A large number of wheat and barley genetic maps that are saturated by a significant number of markers; - The largest plant EST collection with 870’000 wheat ESTs, 440’000 barley ESTs and about 10’000 rye ESTs; - Established protocols for stable transformation by biolistic and agrobacterium as well as a transient expression system using VIGS in wheat and barley; and - Large collections of well characterized cultivated and wild genetic resources. International consortia, such as the International Triticeae Mapping Initiative (ITMI), have advanced synergies in the Triticeae genetics community in the development of additional mapping populations and markers that have led to a dramatic improvement in the resolution of the genetic maps and the amount of molecular markers in the three species resulting in the accelerated utilization of molecular markers in selection programs. Together, with the development of the genomic resources, the isolation of the first genes of agronomic interest by map-based cloning has been enabled and has proven the feasibility of forging the link between genotype and phenotype in the Triticeae species. Moreover, the first analyses of BAC sequences from wheat and barley have allowed preliminary characterizations of their genome organization and composition as well as the first inter- and intra-specific comparative genomic studies. These later have revealed important evolutionary mechanisms (e.g. unequal crossing over, illegitimate recombination) that have shaped the wheat and barley genomes during their evolution. These breakthroughs have demonstrated the feasibility of developing efficient genomic studies in the Triticeae and have led to the recent establishment of the International Wheat Genome Sequencing Consortium (IWGSC) (http//:www.wheatgenome.org) and the International Barley Sequencing Consortium (www.isbc.org) that aim to sequence, respectively, the hexaploid wheat and barley genomes to accelerate gene discovery and crop improvement in the next decade. Large projects aiming at the establishment of the physical maps as well as a better characterization of their composition and organization through large scale random sequencing projects have been initiated already. Concurrently, a number of projects have been launched to develop high throughput functional genomics in wheat and barley. Transcriptomics, proteomics, and metabolomics analyses of traits of agronomic importance, such as quality, disease resistance, drought, and salt tolerance, are underway in both species. Combined with the development of physical maps, efficient gene isolation will be enabled and improved sequencing technologies and reduced sequencing costs will permit ultimately genome sequencing and access to the entire wheat and barley gene regulatory elements repertoire. Because rye is closely related to wheat and barley in Triticeae evolution, the latest developments in wheat and barley genomics will be of great use for developing rye genomics and for providing tools for rye improvement. Finally, a new model for temperate grasses has emerged in the past year with the development of the genetics and genomics (including a 8x whole genome shotgun sequencing project) of Brachypodium, a member of the Poeae family that is more closely related to the Triticeae than rice and can provide valuable information for supporting Triticeae genomics in the near future. These recent breakthroughs have yet to be reviewed in a single source of literature and current handbooks on wheat, barley, or rye are dedicated mainly to progress in genetics. In "Genetics and Genomics of the Triticeae", we will aim to comprehensively review the recent progress in the development of structural and functional genomics tools in the Triticeae species and review the understanding of wheat, barley, and rye biology that has resulted from these new resources as well as to illuminate how this new found knowledge can be applied for the improvement of these essential species. The book will be the seventh volume in the ambitious series of books, Plant Genetics and Genomics (Richard A. Jorgensen, series editor) that will attempt to bring the field up-to-date on the genetics and genomics of important crop plants and genetic models. It is our hope that the publication will be a useful and timely tool for researchers and students alike working with the Triticeae.

Genomic and Precision Medicine

Genomic and Precision Medicine PDF Author: Geoffrey S. Ginsburg
Publisher: Academic Press
ISBN: 0128006536
Category : Science
Languages : en
Pages : 379

Book Description
Genomic and Precision Medicine: Oncology, Third Edition focuses on the applications of genome discovery as research points to personalized cancer therapies. Each chapter is organized to cover the application of genomics and personalized medicine tools and technologies to a) Risk Assessment and Susceptibility, b) Diagnosis and Prognosis, c) Pharmacogenomics and Precision Therapeutics, and d) Emerging and Future Opportunities in the field. Provides a comprehensive volume written and edited by oncology genomic specialists for oncology health providers Includes succinct commentary and key learning points that will assist providers with their local needs for implementation of genomic and personalized medicine into practice Presents an up-to-date overview on major opportunities for genomic and personalized medicine in practice Covers case studies that highlight the practical use of genomics in the management of patients

Transducing the Genome

Transducing the Genome PDF Author: Gary Zweiger
Publisher: Schaum's Outline Series
ISBN:
Category : Medical
Languages : en
Pages : 296

Book Description
In this important book, a scientist gives an inside account of the historic paradigm shift underway in the life sciences as a result of The Human Genome Project, and provides a philosophical framework in which to understand biology and medicine as information sciences.

Information, The Hidden Side of Life

Information, The Hidden Side of Life PDF Author: Cédric Gaucherel
Publisher: John Wiley & Sons
ISBN: 1119579325
Category : Computers
Languages : en
Pages : 212

Book Description
This book explores the unity of life. It proposes that the concept of information is the inner essence of what we today call life. The importance of information for our species is obvious. Human beings are highly dependent on information, constantly exchanging with conspecifics. In a less apparent way, we are the product of genetic and epigenetic information which determines our development in a given environment from a fertilized egg to the adult stage. Even less apparent is that information plays a determining role in ecosystems. This observation may include the prebiotic systems in which life emerged. Our claim is that Nature processes information continuously. This means that even beyond living entities, we can see messages and decoding procedures. Nature can be said to send messages to its own future and then to decode them. Nature “talks” to itself! The systematic organization of messages suggests that, in some respects, we should even speak of the “languages” of Nature.

An Outline of Informational Genetics

An Outline of Informational Genetics PDF Author: Gerard Battail
Publisher: Springer Nature
ISBN: 3031016297
Category : Technology & Engineering
Languages : en
Pages : 191

Book Description
Heredity performs literal communication of immensely long genomes through immensely long time intervals. Genomes nevertheless incur sporadic errors referred to as mutations which have significant and often dramatic effects, after a time interval as short as a human life. How can faithfulness at a very large timescale and unfaithfulness at a very short one be conciliated? The engineering problem of literal communication has been completely solved during the second half of the XX-th century. Originating in 1948 from Claude Shannon's seminal work, information theory provided means to measure information quantities and proved that communication is possible through an unreliable channel (by means left unspecified) up to a sharp limit referred to as its capacity, beyond which communication becomes impossible. The quest for engineering means of reliable communication, named error-correcting codes, did not succeed in closely approaching capacity until 1993 when Claude Berrou and Alain Glavieux invented turbocodes. By now, the electronic devices which invaded our daily lives (e.g., CD, DVD, mobile phone, digital television) could not work without highly efficient error-correcting codes. Reliable communication through unreliable channels up to the limit of what is theoretically possible has become a practical reality: an outstanding achievement, however little publicized. As an engineering problem that nature solved aeons ago, heredity is relevant to information theory. The capacity of DNA is easily shown to vanish exponentially fast, which entails that error-correcting codes must be used to regenerate genomes so as to faithfully transmit the hereditary message. Moreover, assuming that such codes exist explains basic and conspicuous features of the living world, e.g., the existence of discrete species and their hierarchical taxonomy, the necessity of successive generations and even the trend of evolution towards increasingly complex beings. Providing geneticists with an introduction to information theory and error-correcting codes as necessary tools of hereditary communication is the primary goal of this book. Some biological consequences of their use are also discussed, and guesses about hypothesized genomic codes are presented. Another goal is prompting communication engineers to get interested in genetics and biology, thereby broadening their horizon far beyond the technological field, and learning from the most outstanding engineer: Nature. Table of Contents: Foreword / Introduction / A Brief Overview of Molecular Genetics / An Overview of Information Theory / More on Molecular Genetics / More on Information Theory / An Outline of Error-Correcting Codes / DNA is an Ephemeral Memory / A Toy Living World / Subsidiary Hypothesis, Nested System / Soft Codes / Biological Reality Conforms to the Hypotheses / Identification of Genomic Codes / Conclusion and Perspectives

Genomic Applications in Pathology

Genomic Applications in Pathology PDF Author: George Jabboure Netto
Publisher: Springer
ISBN: 3319968300
Category : Medical
Languages : en
Pages : 638

Book Description
​The recent advances in genomics are continuing to reshape our approach to diagnostics, prognostics and therapeutics in oncologic and other disorders. A paradigm shift in pharmacogenomics and in the diagnosis of genetic inherited diseases and infectious diseases is unfolding as the result of implementation of next generation genomic technologies. With rapidly growing knowledge and applications driving this revolution, along with significant technologic and cost changes, genomic approaches are becoming the primary methods in many laboratories and for many diseases. As a result, a plethora of clinical genomic applications have been implemented in diagnostic pathology laboratories, and the applications and demands continue to evolve rapidly. This has created a tremendous need for a comprehensive resource on genomic applications in clinical and anatomic pathology. We believe that our current textbook provides such a resource to practicing molecular pathologists, hematopathologists and other subspecialized pathologists, general pathologists, pathology and other trainees, oncologists, geneticists and a growing spectrum of other clinicians. With periodic updates and a sufficiently rapid time from submission to publication, this textbook will be the resource of choice for many professionals and teaching programs. Its focus on genomics parallels the evolution of these technologies as primary methods in the clinical lab. The rapid evolution of genomics and its applications in medicine necessitates the (frequent) updating of this publication. This text will provide a state-of-the art review of the scientific principles underlying next generation genomic technologies and the required bioinformatics approaches to analyses of the daunting amount of data generated by current and emerging genomic technologies. Implementation roadmaps for various clinical assays such as single gene, gene panels, whole exome and whole genome assays will be discussed together with issues related to reporting and the pathologist’s role in interpretation and clinical integration of genomic tests results. Genomic applications for site-specific solid tumors and hematologic neoplasms will be detailed. Genomic applications in pharmacogenomics, inherited genetic diseases and infectious diseases will also be discussed. The latest iteration of practice recommendations or guidelines in genomic testing put forth by stakeholder professional organizations such as the College of American Pathology and the Association for Molecular Pathology, will be discussed as well as regulatory issues and laboratory accreditation related to genomic testing. All chapters will be written by experts in their fields and will include the most up to date scientific and clinical information.

The Genome Defense

The Genome Defense PDF Author: Jorge L. Contreras
Publisher: Algonquin Books
ISBN: 1616209682
Category : Law
Languages : en
Pages : 433

Book Description
"The gripping true story of a Supreme Court civil rights battle to prevent biotech companies from owning the very thing that makes us who we are-our DNA"--

Oncogenes in B-Cell Neoplasia

Oncogenes in B-Cell Neoplasia PDF Author: M. Potter
Publisher: Springer Science & Business Media
ISBN: 3642698603
Category : Medical
Languages : en
Pages : 281

Book Description