Circuit Techniques for Low-Voltage and High-Speed A/D Converters PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Circuit Techniques for Low-Voltage and High-Speed A/D Converters PDF full book. Access full book title Circuit Techniques for Low-Voltage and High-Speed A/D Converters by Mikko E. Waltari. Download full books in PDF and EPUB format.

Circuit Techniques for Low-Voltage and High-Speed A/D Converters

Circuit Techniques for Low-Voltage and High-Speed A/D Converters PDF Author: Mikko E. Waltari
Publisher: Springer Science & Business Media
ISBN: 0306479796
Category : Technology & Engineering
Languages : en
Pages : 254

Book Description
This useful monograph presents a total of seven prototypes: two double-sampled S/H circuits, a time-interleaved ADC, an IF-sampling self-calibrated pipelined ADC, a current steering DAC with a deglitcher, and two pipelined ADCs employing the SO techniques.

Circuit Techniques for Low-Voltage and High-Speed A/D Converters

Circuit Techniques for Low-Voltage and High-Speed A/D Converters PDF Author: Mikko E. Waltari
Publisher: Springer Science & Business Media
ISBN: 0306479796
Category : Technology & Engineering
Languages : en
Pages : 254

Book Description
This useful monograph presents a total of seven prototypes: two double-sampled S/H circuits, a time-interleaved ADC, an IF-sampling self-calibrated pipelined ADC, a current steering DAC with a deglitcher, and two pipelined ADCs employing the SO techniques.

Generalized Low-Voltage Circuit Techniques for Very High-Speed Time-Interleaved Analog-to-Digital Converters

Generalized Low-Voltage Circuit Techniques for Very High-Speed Time-Interleaved Analog-to-Digital Converters PDF Author: Sai-Weng Sin
Publisher: Springer Science & Business Media
ISBN: 9048197104
Category : Technology & Engineering
Languages : en
Pages : 147

Book Description
Analog-to-Digital Converters (ADCs) play an important role in most modern signal processing and wireless communication systems where extensive signal manipulation is necessary to be performed by complicated digital signal processing (DSP) circuitry. This trend also creates the possibility of fabricating all functional blocks of a system in a single chip (System On Chip - SoC), with great reductions in cost, chip area and power consumption. However, this tendency places an increasing challenge, in terms of speed, resolution, power consumption, and noise performance, in the design of the front-end ADC which is usually the bottleneck of the whole system, especially under the unavoidable low supply-voltage imposed by technology scaling, as well as the requirement of battery operated portable devices. Generalized Low-Voltage Circuit Techniques for Very High-Speed Time-Interleaved Analog-to-Digital Converters will present new techniques tailored for low-voltage and high-speed Switched-Capacitor (SC) ADC with various design-specific considerations.

Circuit Techniques for Low-voltage and High-speed A/D Converters

Circuit Techniques for Low-voltage and High-speed A/D Converters PDF Author: Mikko Waltari
Publisher:
ISBN: 9789512259892
Category :
Languages : en
Pages : 276

Book Description


Low-Power High-Resolution Analog to Digital Converters

Low-Power High-Resolution Analog to Digital Converters PDF Author: Amir Zjajo
Publisher: Springer Science & Business Media
ISBN: 9048197252
Category : Technology & Engineering
Languages : en
Pages : 311

Book Description
With the fast advancement of CMOS fabrication technology, more and more signal-processing functions are implemented in the digital domain for a lower cost, lower power consumption, higher yield, and higher re-configurability. This has recently generated a great demand for low-power, low-voltage A/D converters that can be realized in a mainstream deep-submicron CMOS technology. However, the discrepancies between lithography wavelengths and circuit feature sizes are increasing. Lower power supply voltages significantly reduce noise margins and increase variations in process, device and design parameters. Consequently, it is steadily more difficult to control the fabrication process precisely enough to maintain uniformity. The inherent randomness of materials used in fabrication at nanoscopic scales means that performance will be increasingly variable, not only from die-to-die but also within each individual die. Parametric variability will be compounded by degradation in nanoscale integrated circuits resulting in instability of parameters over time, eventually leading to the development of faults. Process variation cannot be solved by improving manufacturing tolerances; variability must be reduced by new device technology or managed by design in order for scaling to continue. Similarly, within-die performance variation also imposes new challenges for test methods. In an attempt to address these issues, Low-Power High-Resolution Analog-to-Digital Converters specifically focus on: i) improving the power efficiency for the high-speed, and low spurious spectral A/D conversion performance by exploring the potential of low-voltage analog design and calibration techniques, respectively, and ii) development of circuit techniques and algorithms to enhance testing and debugging potential to detect errors dynamically, to isolate and confine faults, and to recover errors continuously. The feasibility of the described methods has been verified by measurements from the silicon prototypes fabricated in standard 180nm, 90nm and 65nm CMOS technology.

High-Resolution and High-Speed Integrated CMOS AD Converters for Low-Power Applications

High-Resolution and High-Speed Integrated CMOS AD Converters for Low-Power Applications PDF Author: Weitao Li
Publisher: Springer
ISBN: 3319620126
Category : Technology & Engineering
Languages : en
Pages : 171

Book Description
This book is a step-by-step tutorial on how to design a low-power, high-resolution (not less than 12 bit), and high-speed (not less than 200 MSps) integrated CMOS analog-to-digital (AD) converter, to respond to the challenge from the rapid growth of IoT. The discussion includes design techniques on both the system level and the circuit block level. In the architecture level, the power-efficient pipelined AD converter, the hybrid AD converter and the time-interleaved AD converter are described. In the circuit block level, the reference voltage buffer, the opamp, the comparator, and the calibration are presented. Readers designing low-power and high-performance AD converters won’t want to miss this invaluable reference. Provides an in-depth introduction to the newest design techniques for the power-efficient, high-resolution (not less than 12 bit), and high-speed (not less than 200 MSps) AD converter; Presents three types of power-efficient architectures of the high-resolution and high-speed AD converter; Discusses the relevant circuit blocks (i.e., the reference voltage buffer, the opamp, and the comparator) in two aspects, relaxing the requirements and improving the performance.

Analog Circuit Design

Analog Circuit Design PDF Author: Arthur H.M. van Roermund
Publisher: Springer Science & Business Media
ISBN: 1402051867
Category : Technology & Engineering
Languages : en
Pages : 402

Book Description
Analog Circuit Design contains eighteen tutorials, reflecting the contributions of six experts, as presented at the 15th workshop on Advances in Analog Circuit Design (AACD). Provides 18 overviews of analog circuit design in High-Speed A-D Converters, Automotive Electronics and Ultra-Low Power Wireless. An essential reference source for the latest developments in the field, tutorial coverage makes it suitable for advanced design courses.

Offset Reduction Techniques in High-Speed Analog-to-Digital Converters

Offset Reduction Techniques in High-Speed Analog-to-Digital Converters PDF Author: Pedro M. Figueiredo
Publisher: Springer Science & Business Media
ISBN: 1402097166
Category : Technology & Engineering
Languages : en
Pages : 395

Book Description
Offset Reduction Techniques in High-Speed Analog-to-Digital Converters analyzes, describes the design, and presents test results of Analog-to-Digital Converters (ADCs) employing the three main high-speed architectures: flash, two-step flash and folding and interpolation. The advantages and limitations of each one are reviewed, and the techniques employed to improve their performance are discussed.

CMOS Data Converters for Communications

CMOS Data Converters for Communications PDF Author: Mikael Gustavsson
Publisher: Springer Science & Business Media
ISBN: 0306473054
Category : Technology & Engineering
Languages : en
Pages : 378

Book Description
CMOS Data Converters for Communications distinguishes itself from other data converter books by emphasizing system-related aspects of the design and frequency-domain measures. It explains in detail how to derive data converter requirements for a given communication system (baseband, passband, and multi-carrier systems). The authors also review CMOS data converter architectures and discuss their suitability for communications. The rest of the book is dedicated to high-performance CMOS data converter architecture and circuit design. Pipelined ADCs, parallel ADCs with an improved passive sampling technique, and oversampling ADCs are the focus for ADC architectures, while current-steering DAC modeling and implementation are the focus for DAC architectures. The principles of the switched-current and the switched-capacitor techniques are reviewed and their applications to crucial functional blocks such as multiplying DACs and integrators are detailed. The book outlines the design of the basic building blocks such as operational amplifiers, comparators, and reference generators with emphasis on the practical aspects. To operate analog circuits at a reduced supply voltage, special circuit techniques are needed. Low-voltage techniques are also discussed in this book. CMOS Data Converters for Communications can be used as a reference book by analog circuit designers to understand the data converter requirements for communication applications. It can also be used by telecommunication system designers to understand the difficulties of certain performance requirements on data converters. It is also an excellent resource to prepare analog students for the new challenges ahead.

Analog Circuit Design

Analog Circuit Design PDF Author: Rudy J. van de Plassche
Publisher: Springer Science & Business Media
ISBN: 1475723539
Category : Technology & Engineering
Languages : en
Pages : 394

Book Description
The realization of signal sampling and quantization at high sample rates with low power dissipation is an important goal in many applications, includ ing portable video devices such as camcorders, personal communication devices such as wireless LAN transceivers, in the read channels of magnetic storage devices using digital data detection, and many others. This paper describes architecture and circuit approaches for the design of high-speed, low-power pipeline analog-to-digital converters in CMOS. Here the term high speed is taken to imply sampling rates above 1 Mhz. In the first section the dif ferent conversion techniques applicable in this range of sample rates is dis cussed. Following that the particular problems associated with power minimization in video-rate pipeline ADCs is discussed. These include optimi zation of capacitor sizes, design of low-voltage transmission gates, and opti mization of switched capacitor gain blocks and operational amplifiers for minimum power dissipation. As an example of the application of these tech niques, the design of a power-optimized lO-bit pipeline AID converter (ADC) that achieves =1. 67 mW per MS/s of sampling rate from 1 MS/s to 20 MS/s is described. 2. Techniques for CMOS Video-Rate AID Conversion Analog-to-digital conversion techniques can be categorized in many ways. One convenient means of comparing techniques is to examine the number of "analog clock cycles" required to produce one effective output sample of the signal being quantized.

Analog Circuit Design

Analog Circuit Design PDF Author: Rudy J. van de Plassche
Publisher: Springer Science & Business Media
ISBN: 9780792379560
Category : Computers
Languages : en
Pages : 426

Book Description
This volume of Analog Circuit Design concentrates on 3 topics: High-Speed Analog-to-Digital Converters, Mixed Signal Design and PLLs and Synthesizers. The book comprises 6 papers on each topic written by internationally recognized experts. These papers have a tutorial nature aimed at improving the design of analog circuits. The book is divided into 3 parts: Part I, High-Speed Analog-to-Digital Converters, describes the latest techniques for producing analog-to-digital converters for applications in disk drives, radio circuits, XDSL and super HiFi audio conversion. Converters having resolutions between 7-bit and 12-bit using CMOS techniques are presented. A 13-bit bandpass sigma-delta modulator for IF signal conversion concludes this part. Part II, Mixed Signal Design, presents papers that detail nearly all known techniques and design issues for mixed signal circuits using CAD tools. Applications for telecom, sigma-delta converters, systems-on-a-chip and RF circuitry are described. Part III, PLLs and Synthesizers, illustrates up-to-date techniques for combination of inductors on a CMOS chip together with PLL techniques to obtain low-noise frequency synthesizers for telecom applications. Special attention is paid to fractional N synthesizers using sigma-delta algorithms. Analog Circuit Design is an essential reference source for analog design engineers and researchers wishing to keep abreast with the latest developments in the field. The tutorial nature of the contributions also makes it suitable for use in an advanced design course.