Computational Methods for Physics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Computational Methods for Physics PDF full book. Access full book title Computational Methods for Physics by Joel Franklin. Download full books in PDF and EPUB format.

Computational Methods for Physics

Computational Methods for Physics PDF Author: Joel Franklin
Publisher: Cambridge University Press
ISBN: 1107067855
Category : Science
Languages : en
Pages :

Book Description
There is an increasing need for undergraduate students in physics to have a core set of computational tools. Most problems in physics benefit from numerical methods, and many of them resist analytical solution altogether. This textbook presents numerical techniques for solving familiar physical problems where a complete solution is inaccessible using traditional mathematical methods. The numerical techniques for solving the problems are clearly laid out, with a focus on the logic and applicability of the method. The same problems are revisited multiple times using different numerical techniques, so readers can easily compare the methods. The book features over 250 end-of-chapter exercises. A website hosted by the author features a complete set of programs used to generate the examples and figures, which can be used as a starting point for further investigation. A link to this can be found at www.cambridge.org/9781107034303.

Computational Methods for Physics

Computational Methods for Physics PDF Author: Joel Franklin
Publisher: Cambridge University Press
ISBN: 1107067855
Category : Science
Languages : en
Pages :

Book Description
There is an increasing need for undergraduate students in physics to have a core set of computational tools. Most problems in physics benefit from numerical methods, and many of them resist analytical solution altogether. This textbook presents numerical techniques for solving familiar physical problems where a complete solution is inaccessible using traditional mathematical methods. The numerical techniques for solving the problems are clearly laid out, with a focus on the logic and applicability of the method. The same problems are revisited multiple times using different numerical techniques, so readers can easily compare the methods. The book features over 250 end-of-chapter exercises. A website hosted by the author features a complete set of programs used to generate the examples and figures, which can be used as a starting point for further investigation. A link to this can be found at www.cambridge.org/9781107034303.

Computational Methods in Physics and Engineering

Computational Methods in Physics and Engineering PDF Author: Samuel S M Wong
Publisher: World Scientific Publishing Company
ISBN: 9813103035
Category : Science
Languages : en
Pages : 520

Book Description
Numerical methods are playing an ever-increasing role in physics and engineering. This is especially true after the recent explosion of computing power on the desk-top. This book is aimed at helping the user to make intelligent use of this power tool. Each method is introduced through realistic examples and actual computer programs. The explanations provide the background for making a choice between similar approaches and the knowledge to explore the network for the appropriate existing codes. Tedious proofs and derivations, on the other hand, are delegated to references. Examples of uncoventional methods are also given to stimulate readers in exploring new ways of solving problems. Errata(s) Appendix B, Page 485 “http://www.wspc.com.sg/others/software/3365/ftp.wspc.com.sg/pub/software/3365/” The above links should be replaced with “www.worldscientific.com/doi/suppl/10.1142/3365/suppl_file/3365_software_free.zip”

Computational Methods for Physicists

Computational Methods for Physicists PDF Author: Simon Sirca
Publisher: Springer Science & Business Media
ISBN: 3642324789
Category : Science
Languages : en
Pages : 716

Book Description
This book helps advanced undergraduate, graduate and postdoctoral students in their daily work by offering them a compendium of numerical methods. The choice of methods pays significant attention to error estimates, stability and convergence issues as well as to the ways to optimize program execution speeds. Many examples are given throughout the chapters, and each chapter is followed by at least a handful of more comprehensive problems which may be dealt with, for example, on a weekly basis in a one- or two-semester course. In these end-of-chapter problems the physics background is pronounced, and the main text preceding them is intended as an introduction or as a later reference. Less stress is given to the explanation of individual algorithms. It is tried to induce in the reader an own independent thinking and a certain amount of scepticism and scrutiny instead of blindly following readily available commercial tools.

Computational Methods for Physics

Computational Methods for Physics PDF Author: Joel Franklin
Publisher:
ISBN: 9781107059627
Category : Electronic books
Languages : en
Pages : 400

Book Description
Presenting mathematical techniques for physical problems, this textbook is invaluable for undergraduate students in physics.

Computational Methods in Physics and Engineering

Computational Methods in Physics and Engineering PDF Author: Samuel Shaw Ming Wong
Publisher: World Scientific
ISBN: 9789810230432
Category : Science
Languages : en
Pages : 524

Book Description
Readership: Undergraduates, graduate students, and research scientists in computational physics, engineering, physical science, applied physics, and fractals.

Methods in Computational Physics

Methods in Computational Physics PDF Author: Berni Alder
Publisher:
ISBN:
Category : Mathematical physics
Languages : en
Pages : 408

Book Description


Computational Methods in Physics

Computational Methods in Physics PDF Author: Simon Širca
Publisher: Springer
ISBN: 3319786199
Category : Science
Languages : en
Pages : 880

Book Description
This book is intended to help advanced undergraduate, graduate, and postdoctoral students in their daily work by offering them a compendium of numerical methods. The choice of methods pays significant attention to error estimates, stability and convergence issues, as well as optimization of program execution speeds. Numerous examples are given throughout the chapters, followed by comprehensive end-of-chapter problems with a more pronounced physics background, while less stress is given to the explanation of individual algorithms. The readers are encouraged to develop a certain amount of skepticism and scrutiny instead of blindly following readily available commercial tools. The second edition has been enriched by a chapter on inverse problems dealing with the solution of integral equations, inverse Sturm-Liouville problems, as well as retrospective and recovery problems for partial differential equations. The revised text now includes an introduction to sparse matrix methods, the solution of matrix equations, and pseudospectra of matrices; it discusses the sparse Fourier, non-uniform Fourier and discrete wavelet transformations, the basics of non-linear regression and the Kolmogorov-Smirnov test; it demonstrates the key concepts in solving stiff differential equations and the asymptotics of Sturm-Liouville eigenvalues and eigenfunctions. Among other updates, it also presents the techniques of state-space reconstruction, methods to calculate the matrix exponential, generate random permutations and compute stable derivatives.

Computational Approaches in Physics

Computational Approaches in Physics PDF Author: Maria Fyta
Publisher: Morgan & Claypool Publishers
ISBN: 168174418X
Category : Computers
Languages : en
Pages : 130

Book Description
Computational Approaches in Physics reviews computational schemes which are used in the simulations of physical systems. These range from very accurate ab initio techniques up to coarse-grained and mesoscopic schemes. The choice of the method is based on the desired accuracy and computational efficiency. A bottom-up approach is used to present the various simulation methods used in Physics, starting from the lower level and the most accurate methods, up to particle-based ones. The book outlines the basic theory underlying each technique and its complexity, addresses the computational implications and issues in the implementation, as well as present representative examples. A link to the most common computational codes, commercial or open source is listed in each chapter. The strengths and deficiencies of the variety of techniques discussed in this book are presented in detail and visualization tools commonly used to make the simulation data more comprehensive are also discussed. In the end, specific techniques are used as bridges across different disciplines. To this end, examples of different systems tackled with the same methods are presented. The appendices include elements of physical theory which are prerequisites in understanding the simulation methods.

Computational Methods in Classical and Quantum Physics

Computational Methods in Classical and Quantum Physics PDF Author: Michael Buchanan Hooper
Publisher: Newman Communications Corporation
ISBN:
Category : Science
Languages : en
Pages : 488

Book Description


Computational Problems for Physics

Computational Problems for Physics PDF Author: Rubin H. Landau
Publisher: CRC Press
ISBN: 1351784021
Category : Science
Languages : en
Pages : 465

Book Description
Our future scientists and professionals must be conversant in computational techniques. In order to facilitate integration of computer methods into existing physics courses, this textbook offers a large number of worked examples and problems with fully guided solutions in Python as well as other languages (Mathematica, Java, C, Fortran, and Maple). It’s also intended as a self-study guide for learning how to use computer methods in physics. The authors include an introductory chapter on numerical tools and indication of computational and physics difficulty level for each problem. Readers also benefit from the following features: • Detailed explanations and solutions in various coding languages. • Problems are ranked based on computational and physics difficulty. • Basics of numerical methods covered in an introductory chapter. • Programming guidance via flowcharts and pseudocode. Rubin Landau is a Distinguished Professor Emeritus in the Department of Physics at Oregon State University in Corvallis and a Fellow of the American Physical Society (Division of Computational Physics). Manuel Jose Paez-Mejia is a Professor of Physics at Universidad de Antioquia in Medellín, Colombia.