Electron Energy-Loss Spectroscopy in the Electron Microscope PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Electron Energy-Loss Spectroscopy in the Electron Microscope PDF full book. Access full book title Electron Energy-Loss Spectroscopy in the Electron Microscope by R.F. Egerton. Download full books in PDF and EPUB format.

Electron Energy-Loss Spectroscopy in the Electron Microscope

Electron Energy-Loss Spectroscopy in the Electron Microscope PDF Author: R.F. Egerton
Publisher: Springer Science & Business Media
ISBN: 1475750994
Category : Science
Languages : en
Pages : 491

Book Description
to the Second Edition Since the first (1986) edition of this book, the numbers of installations, researchers, and research publications devoted to electron energy-loss spec troscopy (EELS) in the electron microscope have continued to expand. There has been a trend towards intermediate accelerating voltages and field-emission sources, both favorable to energy-loss spectroscopy, and sev eral types of energy-filtering microscope are now available commercially. Data-acquisition hardware and software, based on personal computers, have become more convenient and user-friendly. Among university re searchers, much thought has been given to the interpretation and utilization of near-edge fine structure. Most importantly, there have been many practi cal applications of EELS. This may reflect an increased awareness of the potentialities of the technique, but in many cases it is the result of skill and persistence on the part of the experimenters, often graduate students. To take account of these developments, the book has been extensively revised (over a period of two years) and more than a third of it rewritten. I have made various minor changes to the figures and added about 80 new ones. Except for a few small changes, the notation is the same as in the first edition, with all equations in SI units.

Electron Energy-Loss Spectroscopy in the Electron Microscope

Electron Energy-Loss Spectroscopy in the Electron Microscope PDF Author: R.F. Egerton
Publisher: Springer Science & Business Media
ISBN: 1475750994
Category : Science
Languages : en
Pages : 491

Book Description
to the Second Edition Since the first (1986) edition of this book, the numbers of installations, researchers, and research publications devoted to electron energy-loss spec troscopy (EELS) in the electron microscope have continued to expand. There has been a trend towards intermediate accelerating voltages and field-emission sources, both favorable to energy-loss spectroscopy, and sev eral types of energy-filtering microscope are now available commercially. Data-acquisition hardware and software, based on personal computers, have become more convenient and user-friendly. Among university re searchers, much thought has been given to the interpretation and utilization of near-edge fine structure. Most importantly, there have been many practi cal applications of EELS. This may reflect an increased awareness of the potentialities of the technique, but in many cases it is the result of skill and persistence on the part of the experimenters, often graduate students. To take account of these developments, the book has been extensively revised (over a period of two years) and more than a third of it rewritten. I have made various minor changes to the figures and added about 80 new ones. Except for a few small changes, the notation is the same as in the first edition, with all equations in SI units.

Electron Energy-Loss Spectroscopy in the Electron Microscope

Electron Energy-Loss Spectroscopy in the Electron Microscope PDF Author: R.F. Egerton
Publisher: Springer Science & Business Media
ISBN: 1461568870
Category : Science
Languages : en
Pages : 418

Book Description
Electron energy-loss spectroscopy (EELS or ELS) has been used to investi gate the physical properties of solids for over 40 years in a handful of laboratories distributed around the world. More recently, electron micro scopists have become interested in EELS as a method of chemical analysis with the potential for achieving very high sensitivity and spatial resolution, and there is a growing awareness of the fact that the loss spectrum can provide structural information from a thin specimen. In comparison with energy-dispersive x-ray spectroscopy, for example, EELS is a fairly demand ing technique, requiring for its full exploitation a knowledge of atomic and solid-state physics, electron optics, and electronics. In writing this book, I have tried to gather together relevant information from these various fields. Chapter 1 begins at an elementary level; readers with some experience in EELS will be familiar with the content of the first two sections. Chapter 2 deals with instrumentation and experimental technique, and should con tain material of interest to researchers who want to get the best performance out of commercial equipment as well as those who contemplate building their own spectrometer or electron-detection system. Chapter 3 outlines the theory used to interpret spectral features, while Chapter 4 gives procedures for numerical processing of the energy-loss spectrum. Chapter 5 contains examples of practical applications of EELS and a discussion of radiation damage, spatial resolution, and detection limits.

Electron Energy-Loss Spectroscopy in the Electron Microscope

Electron Energy-Loss Spectroscopy in the Electron Microscope PDF Author: R. F. Egerton
Publisher: Springer Science & Business Media
ISBN: 9780306452239
Category : Science
Languages : en
Pages : 506

Book Description
A comprehensive guide to a technique for the chemical and structural analysis of thin specimens in a transmission electron microscope. About a third of the text has been rewritten from the 1986 first edition to reflect the substantial developments in methods, instruments, applications, and interpret

Electron Energy-Loss Spectroscopy in the Electron Microscope

Electron Energy-Loss Spectroscopy in the Electron Microscope PDF Author: R.F. Egerton
Publisher: Springer Science & Business Media
ISBN: 1441995838
Category : Technology & Engineering
Languages : en
Pages : 498

Book Description
Within the last 30 years, electron energy-loss spectroscopy (EELS) has become a standard analytical technique used in the transmission electron microscope to extract chemical and structural information down to the atomic level. In two previous editions, Electron Energy-Loss Spectroscopy in the Electron Microscope has become the standard reference guide to the instrumentation, physics and procedures involved, and the kind of results obtainable. Within the last few years, the commercial availability of lens-aberration correctors and electron-beam monochromators has further increased the spatial and energy resolution of EELS. This thoroughly updated and revised Third Edition incorporates these new developments, as well as advances in electron-scattering theory, spectral and image processing, and recent applications in fields such as nanotechnology. The appendices now contain a listing of inelastic mean free paths and a description of more than 20 MATLAB programs for calculating EELS data.

Transmission Electron Energy Loss Spectrometry in Materials Science and the EELS Atlas

Transmission Electron Energy Loss Spectrometry in Materials Science and the EELS Atlas PDF Author: Channing C. Ahn
Publisher: John Wiley & Sons
ISBN: 3527604774
Category : Science
Languages : en
Pages : 472

Book Description
This book/CD package provides a reference on electron energy loss spectrometry (EELS) with the transmission electron microscope, an established technique for chemical and structural analysis of thin specimens in a transmission electron microscope. Describing the issues of instrumentation, data acquisition, and data analysis, the authors apply this technique to several classes of materials, namely ceramics, metals, polymers, minerals, semiconductors, and magnetic materials. The accompanying CD-ROM consists of a compendium of experimental spectra.

Electron Energy-Loss Spectroscopy in the Electron Microscope

Electron Energy-Loss Spectroscopy in the Electron Microscope PDF Author: Ray Egerton
Publisher:
ISBN: 9781475751000
Category :
Languages : en
Pages : 500

Book Description


Electron Energy-Loss Spectroscopy in the Electron Microscope

Electron Energy-Loss Spectroscopy in the Electron Microscope PDF Author:
Publisher:
ISBN: 9781441995841
Category :
Languages : en
Pages : 504

Book Description


Electron Energy Loss Spectroscopy

Electron Energy Loss Spectroscopy PDF Author: R. Brydson
Publisher: Garland Science
ISBN: 1000144623
Category : Science
Languages : en
Pages : 237

Book Description
Electron Energy Loss Spectroscopy (EELS) is a high resolution technique used for the analysis of thin samples of material. The technique is used in many modern transmission electron microscopes to characterise materials. This book provides an up-to-date introduction to the principles and applications of EELS. Specific topics covered include, theory of EELS, elemental quantification, EELS fine structure, EELS imaging and advanced techniques.

Transmission Electron Microscopy

Transmission Electron Microscopy PDF Author: Ludwig Reimer
Publisher: Springer
ISBN: 3662135531
Category : Science
Languages : en
Pages : 532

Book Description
The aim of this book is to outline the physics of image formation, electron specimen interactions and image interpretation in transmission electron mic roscopy. The book evolved from lectures delivered at the University of Munster and is a revised version of the first part of my earlier book Elek tronenmikroskopische Untersuchungs- und Priiparationsmethoden, omitting the part which describes specimen-preparation methods. In the introductory chapter, the different types of electron microscope are compared, the various electron-specimen interactions and their applications are summarized and the most important aspects of high-resolution, analytical and high-voltage electron microscopy are discussed. The optics of electron lenses is discussed in Chapter 2 in order to bring out electron-lens properties that are important for an understanding of the function of an electron microscope. In Chapter 3, the wave optics of elec trons and the phase shifts by electrostatic and magnetic fields are introduced; Fresnel electron diffraction is treated using Huygens' principle. The recogni tion that the Fraunhofer-diffraction pattern is the Fourier transform of the wave amplitude behind a specimen is important because the influence of the imaging process on the contrast transfer of spatial frequencies can be described by introducing phase shifts and envelopes in the Fourier plane. In Chapter 4, the elements of an electron-optical column are described: the electron gun, the condenser and the imaging system. A thorough understanding of electron-specimen interactions is essential to explain image contrast.

Spectroscopy for Materials Characterization

Spectroscopy for Materials Characterization PDF Author: Simonpietro Agnello
Publisher: John Wiley & Sons
ISBN: 1119697328
Category : Technology & Engineering
Languages : en
Pages : 500

Book Description
SPECTROSCOPY FOR MATERIALS CHARACTERIZATION Learn foundational and advanced spectroscopy techniques from leading researchers in physics, chemistry, surface science, and nanoscience In Spectroscopy for Materials Characterization, accomplished researcher Simonpietro Agnello delivers a practical and accessible compilation of various spectroscopy techniques taught and used to today. The book offers a wide-ranging approach taught by leading researchers working in physics, chemistry, surface science, and nanoscience. It is ideal for both new students and advanced researchers studying and working with spectroscopy. Topics such as confocal and two photon spectroscopy, as well as infrared absorption and Raman and micro-Raman spectroscopy, are discussed, as are thermally stimulated luminescence and spectroscopic studies of radiation effects on optical materials. Each chapter includes a basic introduction to the theory necessary to understand a specific technique, details about the characteristic instrumental features and apparatuses used, including tips for the appropriate arrangement of a typical experiment, and a reproducible case study that shows the discussed techniques used in a real laboratory. Readers will benefit from the inclusion of: Complete and practical case studies at the conclusion of each chapter to highlight the concepts and techniques discussed in the material Citations of additional resources ideal for further study A thorough introduction to the basic aspects of radiation matter interaction in the visible-ultraviolet range and the fundamentals of absorption and emission A rigorous exploration of time resolved spectroscopy at the nanosecond and femtosecond intervals Perfect for Master and Ph.D. students and researchers in physics, chemistry, engineering, and biology, Spectroscopy for Materials Characterization will also earn a place in the libraries of materials science researchers and students seeking a one-stop reference to basic and advanced spectroscopy techniques.