Implementing and Evaluating Genomic Screening Programs in Health Care Systems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Implementing and Evaluating Genomic Screening Programs in Health Care Systems PDF full book. Access full book title Implementing and Evaluating Genomic Screening Programs in Health Care Systems by National Academies of Sciences, Engineering, and Medicine. Download full books in PDF and EPUB format.

Implementing and Evaluating Genomic Screening Programs in Health Care Systems

Implementing and Evaluating Genomic Screening Programs in Health Care Systems PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309473411
Category : Medical
Languages : en
Pages : 151

Book Description
Genomic applications are being integrated into a broad range of clinical and research activities at health care systems across the United States. This trend can be attributed to a variety of factors, including the declining cost of genome sequencing and the potential for improving health outcomes and cutting the costs of care. The goals of these genomics-based programs may be to identify individuals with clinically actionable variants as a way of preventing disease, providing diagnoses for patients with rare diseases, and advancing research on genetic contributions to health and disease. Of particular interest are genomics- based screening programs, which will, in this publication, be clinical screening programs that examine genes or variants in unselected populations in order to identify individuals who are at an increased risk for a particular health concern (e.g., diseases, adverse drug outcomes) and who might benefit from clinical interventions. On November 1, 2017, the National Academies of Sciences, Engineering, and Medicine hosted a public workshop to explore the challenges and opportunities associated with integrating genomics-based screening programs into health care systems. This workshop was developed as a way to explore the challenges and opportunities associated with integrating genomics-based programs in health care systems in the areas of evidence collection, sustainability, data sharing, infrastructure, and equity of access. This publication summarizes the presentations and discussions from the workshop.

Implementing and Evaluating Genomic Screening Programs in Health Care Systems

Implementing and Evaluating Genomic Screening Programs in Health Care Systems PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309473411
Category : Medical
Languages : en
Pages : 151

Book Description
Genomic applications are being integrated into a broad range of clinical and research activities at health care systems across the United States. This trend can be attributed to a variety of factors, including the declining cost of genome sequencing and the potential for improving health outcomes and cutting the costs of care. The goals of these genomics-based programs may be to identify individuals with clinically actionable variants as a way of preventing disease, providing diagnoses for patients with rare diseases, and advancing research on genetic contributions to health and disease. Of particular interest are genomics- based screening programs, which will, in this publication, be clinical screening programs that examine genes or variants in unselected populations in order to identify individuals who are at an increased risk for a particular health concern (e.g., diseases, adverse drug outcomes) and who might benefit from clinical interventions. On November 1, 2017, the National Academies of Sciences, Engineering, and Medicine hosted a public workshop to explore the challenges and opportunities associated with integrating genomics-based screening programs into health care systems. This workshop was developed as a way to explore the challenges and opportunities associated with integrating genomics-based programs in health care systems in the areas of evidence collection, sustainability, data sharing, infrastructure, and equity of access. This publication summarizes the presentations and discussions from the workshop.

Genomics-Enabled Learning Health Care Systems

Genomics-Enabled Learning Health Care Systems PDF Author: Institute of Medicine
Publisher: National Academies Press
ISBN: 0309371155
Category : Medical
Languages : en
Pages : 116

Book Description
The inclusion of genomic data in a knowledge-generating health care system infrastructure is one promising way to harness the full potential of that information to provide better patient care. In such a system, clinical practice and research influence each other with the goal of improving the efficiency and effectiveness of disease prevention, diagnosis, and treatment. To examine pragmatic approaches to incorporating genomics in learning health care systems, the Institute of Medicine Roundtable on Translating Genomic-Based Research for Health hosted a workshop which convened a variety of stakeholder groups, including commercial developers, health information technology professionals, clinical providers, academic researchers, patient groups, and government and health system representatives, to present their perspectives and participate in discussions on maximizing the value that can be obtained from genomic information. The workshop examined how a variety of systems are capturing and making use of genomic data to generate knowledge for advancing health care in the 21st century. It also sought to evaluate the challenges, opportunities, and best practices for capturing or using genomic information in knowledge-generating health care systems. Genomics-Enabled Learning Health Care Systems summarizes the presentations and discussion of the workshop.

Applying an Implementation Science Approach to Genomic Medicine

Applying an Implementation Science Approach to Genomic Medicine PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309437792
Category : Medical
Languages : en
Pages : 137

Book Description
Although it is becoming increasingly more common for clinicians to use genomic data in their practices for disease prevention, diagnosis, and treatment, the process of integrating genomic data into the practice of medicine has been a slow and challenging one. Some of the major barriers impeding the incorporation of new genomic technology into clinical practice are: the difficulty of changing routine medical practices to account for the use of genetic testing, the limited knowledge of patients and providers about genomic medicine, assessing sufficient evidence to support the use of genetic tests, privacy and data security issues, and uncertainty about reimbursement. The field of implementation science may be able to provide insights concerning efficient ways to incorporate genomic applications into routine clinical practice. The focus of implementation science studies is to identify integration bottlenecks and optimal approaches for a given setting and ultimately to promote the up-take of research findings. To explore the potential of implementation science to improve the integration of genomics into medicine, the National Academies of Sciences, Engineering, and Medicine held a workshop in Washington, DC, in November 2015. Participants explored the challenges and opportunities of integrating genomic advances into the clinic through the lens of implementation science. This report summarizes the presentations and discussions from the workshop.

Systems for Research and Evaluation for Translating Genome-Based Discoveries for Health

Systems for Research and Evaluation for Translating Genome-Based Discoveries for Health PDF Author: Institute of Medicine
Publisher: National Academies Press
ISBN: 030913983X
Category : Medical
Languages : en
Pages : 102

Book Description
With the advent of genome-wide association studies, numerous associations between specific gene loci and complex diseases have been identified-for breast cancer, coronary artery disease, and asthma, for example. This rapidly advancing field of genomics has stirred great interest in "personalized" health care from both the public and private sectors. The hope is that using genomic information in clinical care will lead to reduced health care costs and improved health outcomes as therapies are tailored to the genetic susceptibilities of patients. A variety of genetically based health care innovations have already reached the marketplace, but information about the clinical use of these treatments and diagnostics is limited. Currently data do not provide information about how a genomic test impacts clinical care and patient health outcomes-other approaches are needed to garner such information. This volume summarizes a workshop to address central questions related to the development of systems to evaluate clinical use of health care innovations that stem from genome-based research: What are the practical realities of creating such systems? What different models could be used? What are the strengths and weaknesses of each model? How effectively can such systems address questions about health outcomes?

The Economics of Genomic Medicine

The Economics of Genomic Medicine PDF Author: Institute of Medicine
Publisher: National Academies Press
ISBN: 0309269733
Category : Medical
Languages : en
Pages : 129

Book Description
The sequencing of the human genome and the identification of links between specific genetic variants and diseases have led to tremendous excitement over the potential of genomics to direct patient treatment toward more effective or less harmful interventions. Still, the use of whole genome sequencing challenges the traditional model of medical care where a test is ordered only when there is a clear indication for its use and a path for downstream clinical action is known. This has created a tension between experts who contend that using this information is premature and those who believe that having such information will empower health care providers and patients to make proactive decisions regarding lifestyle and treatment options. In addition, some stakeholders are concerned that genomic technologies will add costs to the health care system without providing commensurate benefits, and others think that health care costs could be reduced by identifying unnecessary or ineffective treatments. Economic models are frequently used to anticipate the costs and benefits of new health care technologies, policies, and regulations. Economic studies also have been used to examine much more specific issues, such as comparing the outcomes and cost effectiveness of two different drug treatments for the same condition. These kinds of analyses offer more than just predictions of future health care costs. They provide information that is valuable when implementing and using new technologies. Unfortunately, however, these economic assessments are often limited by a lack of data on which to base the examination. This particularly affects health economics, which includes many factors for which current methods are inadequate for assessing, such as personal utility, social utility, and patient preference. To understand better the health economic issues that may arise in the course of integrating genomic data into health care, the Roundtable on Translating Genomic-Based Research for Health hosted a workshop in Washington, DC, on July 17-18, 2012, that brought together economists, regulators, payers, biomedical researchers, patients, providers, and other stakeholders to discuss the many factors that may influence this implementation. The workshop was one of a series that the roundtable has held on this topic, but it was the first focused specifically on economic issues. The Economics of Genomic Medicine summarizes this workshop.

Genetics and Public Health in the 21st Century

Genetics and Public Health in the 21st Century PDF Author: Muin J. Khoury
Publisher: Oxford University Press, USA
ISBN: 0195128303
Category : Language Arts & Disciplines
Languages : en
Pages : 661

Book Description
The first broad survey of these two fields, this book deleniates a framework for integrating advances in human genetics into public health practice.

An Evidence Framework for Genetic Testing

An Evidence Framework for Genetic Testing PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309453291
Category : Medical
Languages : en
Pages : 149

Book Description
Advances in genetics and genomics are transforming medical practice, resulting in a dramatic growth of genetic testing in the health care system. The rapid development of new technologies, however, has also brought challenges, including the need for rigorous evaluation of the validity and utility of genetic tests, questions regarding the best ways to incorporate them into medical practice, and how to weigh their cost against potential short- and long-term benefits. As the availability of genetic tests increases so do concerns about the achievement of meaningful improvements in clinical outcomes, costs of testing, and the potential for accentuating medical care inequality. Given the rapid pace in the development of genetic tests and new testing technologies, An Evidence Framework for Genetic Testing seeks to advance the development of an adequate evidence base for genetic tests to improve patient care and treatment. Additionally, this report recommends a framework for decision-making regarding the use of genetic tests in clinical care.

Health Economics of Genomic Medicine

Health Economics of Genomic Medicine PDF Author: Sarah Wordsworth
Publisher:
ISBN: 9783110699555
Category :
Languages : en
Pages : 250

Book Description
Although genomic medicine is still a fairly new clinical area, the history of health economics involvement in genomics has a longer history than might be anticipated. Some of the earliest health economics input into genomics was in areas such as neonatal and newborn screening, where health economists contributed to decisions about adding new conditions into newborn screening programmes worldwide. More recently, the first human genome was only sequenced in 2003, costing between US$500 million and US$1 billion. However, by 2008 costs had fallen to a level where so called 'next-generation sequencing (NGS)' approaches started to enter clinical research. NGS approaches allow either the whole genome using methods such as whole-genome sequencing (WGS) or parts of it using whole-exome sequencing (WES) or targeted panels to be sequenced in hours with increased sensitivity compared to older less advanced genetic testing approaches. These sequencing approaches provide information that can inform diagnosis, prognosis and clinical management for a variety of disorders, such as rare diseases and some cancers. However, the current costs are still too expensive for some health care providers and the benefit of the tests is largely unknown. Indeed, a lack of evidence on the cost-effectiveness of novel genomic technologies such as WGS is considered a key translational challenge. This is partly because economic evaluations of genomic technologies often fall outside the remit of health technology assessment (HTA) agencies, such as NICE and PBAC. Where they are undertaken (in a HTA context), the methods used for the assessment sometimes differ from those recommended by HTA agencies for cost-effectiveness analysis. This is against a background of uncertainty as to whether the terms precision medicine, personalised medicine or genomic medicine best capture this space in health care. Methodological challenges Some applications of genomic sequencing generate information that may not improve quality of life (as measured using preference-based health-related quality of life [HRQoL] instruments such as the EuroQol-five dimensions questionnaire) or extend life expectancy. One example is the use of WGS and WES to guide diagnosis in autism spectrum disorder. However, genomic sequencing results may influence patient wellbeing via non-clinical routes, generating 'personal utility'. This is a particular issue for individuals with rare diseases, who often have lengthy diagnostic journeys but few (if any) treatment options available once they receive a diagnosis. This could also be an issue if individuals without known health problems (healthy cohorts) undergo genomic sequencing and find out that they have an elevated risk of a disease, but no preventive action can be taken to manage this risk. With respect to costs, the costs of undertaking genomic tests are only one component of the cost of the overall genomic testing process. The costs that are incurred beyond those associated with the production of genomic information (so probably beyond the scope of any national tariffs that might be generated) include the costs of bioinformatics analysis, interpretation of results in multidisciplinary team (MDT) meetings and genetic counselling services. Such issues have raised questions about whether or not genomics is exceptional for health economists - possibly not, but the combined issues perhaps lead to it often requiring additional attention. There is also a consideration of the importance of accounting for the 'personal' when evaluating personalized medicine and considers the extent to which extra-welfarist and welfarist approaches to economic evaluation achieve this objective. Extra-welfarist approaches are currently used by many health technology assessment agencies but may not capture all of the outcomes that are important to patients in this context. Extensions to the extra-welfarist approach that might better capture the 'personal' are outlined, including multi-criteria decision analysis and the capability approach. Evidence A recent literature review identified only 36 economic evaluations of either WGS or WES, six of which were cost-effectiveness analyses using diagnostic yield as the outcome measure. Only two publications presented cost-utility analyses using quality-adjusted life-years (QALYs) as the measure of health outcomes. HTA agencies generally require data on survival and quality of life when evaluating new healthcare interventions, which, when combined, allow clinical utility to be quantified using QALYs. However, existing studies have primarily quantified the clinical utility of genomic tests in terms of changes in diagnostic yield. Methodological uncertainty among health economists is one potential explanation for the lack of evidence on the health outcomes associated with genomic sequencing. Over the past decade, health economists have repeatedly questioned whether metrics such as the QALY in genomic medicine, which focuses on clinical utility, can fully quantify the outcomes that are important to patients when they undergo genomic testing. Policy picture There are high-level discussions in several countries, including the UK, about extending the use of genomic sequencing into newborning screening, so effectively screening everyone at birth for a large range of conditions, far more than those currently being screened for and which there might not be treatments for yet. This is in addition to long term epidemiological and health economic discussions on using newborn screening for conditions such as hereditary hemochromatosis. A further area of uncertainty is the use of genomic sequencing in 'healthy populations', including direct to consumer testing (private genetic tests). In a public health care system setting, the UK Department of health is exploring the value of establishing a healthy cohort of volunteer. Furthermore, research studies are assessing the costs and effects of polygenetic risk scores in the context of primary care as an opportunistic 'health check' approach, which could incorporate risks for cardiovascular disease, diabetes, different cancers and conditions such as chrohn's disease etc. Clearly, there are health economic questions to be asked about the downstream costs and consequences of genomic tests in these newborn and 'healthy' populations. In cancer, there are discussions about how to handle the new invention of agnostic cancer drugs (which essentially target the mutation rather than the cancer, so the same drug can treat several cancers). This is an area where assessments are going through HTA agencies who are unsure about the best approaches to adopt to these assessments where drug companies are putting forward a drug for assessment that can potentially treat different cancers with very different disease profiles. These developments require careful consideration from many perspectives, including health economics. Besides highlighting some of the challenges in assessing the economic impact of genomic medicine and the use of advanced (and less advanced) technologies, the book will propose potential solutions to these key challenges. For example, in terms of data availability, one obstacle to translating genomic sequencing into routine health care has been a lack of large randomised controlled clinical trials data for health economists and others to use to populate cost-effectiveness analyses (CEAs). Arguably, in response, reimbursement decisions have moved towards lower evidentiary standards, with the development of managed access programs that hope to balance the intense pressure for patient access with the need to consider the sustainability objectives of health care systems. Single arm trials are common for assessing clinical utility of precision medicine. By excluding a counterfactual, these trials introduce outcomes uncertainty through their inability to establish causal treatment effects. In this section of the book, we illustrate the application of quasi-experimental methods for evaluating precision medicine in case studies linking real-world big data and single arm trials. A further potential option here might be provided by 'big data' can be used to partially support CEAs in genomics. Advanced genomic sequencing is considered to be a prominent example of big data because of the quantity and complexity of data it produces and because it presents an opportunity to use powerful information sources that could reduce clinical and health economic uncertainty at a patient level. The creation of large national sequencing initiatives with sequencing data linked to clinical data (including health outcomes) and resource use data such as hospital episode statistics data and claims data. Large-scale sequencing projects such as the 100,000 Genome Project in the UK and the All of Us Program in the US are collecting an unprecedented amount of genomic, clinical and healthcare resource use data on individuals with cancer or rare diseases, as well as healthy individuals. Some of these large-scale projects are now approaching completion, and national health services are deciding whether WGS and WES should be translated into clinical practice for specific disorders.

A Guide to Genetic Counseling

A Guide to Genetic Counseling PDF Author: Wendy R. Uhlmann
Publisher: John Wiley & Sons
ISBN: 1118210530
Category : Medical
Languages : en
Pages : 644

Book Description
The first book devoted exclusively to the principles and practice of genetic counseling—now in a new edition First published in 1998, A Guide to Genetic Counseling quickly became a bestselling and widely recognized text, used nationally and internationally in genetic counseling training programs. Now in its eagerly anticipated Second Edition, it provides a thoroughly revised and comprehensive overview of genetic counseling, focusing on the components, theoretical framework, and unique approach to patient care that are the basis of this profession. The book defines the core competencies and covers the genetic counseling process from case initiation to completion—in addition to addressing global professional issues—with an emphasis on describing fundamental principles and practices. Chapters are written by leaders in the field of genetic counseling and are organized to facilitate academic instruction and skill attainment. They provide the most up-to-date coverage of: The history and practice of genetic counseling Family history Interviewing Case preparation and management Psychosocial counseling Patient education Risk communication and decision-making Medical genetics evaluation Understanding genetic testing Medical documentation Multicultural counseling Ethical and legal issues Student supervision Genetic counseling research Professional development Genetics education and outreach Evolving roles and expanding opportunities Case examples A Guide to Genetic Counseling, Second Edition belongs on the syllabi of all medical and human genetics and genetic counseling training programs. It is an indispensable reference for both students and healthcare professionals working with patients who have or are at risk for genetic conditions.

Oxford Textbook of Global Public Health

Oxford Textbook of Global Public Health PDF Author: Roger Detels
Publisher: Oxford University Press
ISBN: 019881013X
Category : Medical
Languages : en
Pages : 1717

Book Description
Sixth edition of the hugely successful, internationally recognised textbook on global public health and epidemiology, with 3 volumes comprehensively covering the scope, methods, and practice of the discipline