Author: David Colton
Publisher: SIAM
ISBN: 1611973163
Category : Mathematics
Languages : en
Pages : 286
Book Description
This classic book provides a rigorous treatment of the Riesz?Fredholm theory of compact operators in dual systems, followed by a derivation of the jump relations and mapping properties of scalar and vector potentials in spaces of continuous and H?lder continuous functions. These results are then used to study scattering problems for the Helmholtz and Maxwell equations. Readers will benefit from a full discussion of the mapping properties of scalar and vector potentials in spaces of continuous and H?lder continuous functions, an in-depth treatment of the use of boundary integral equations to solve scattering problems for acoustic and electromagnetic waves, and an introduction to inverse scattering theory with an emphasis on the ill-posedness and nonlinearity of the inverse scattering problem.
Integral Equation Methods in Scattering Theory
Author: David Colton
Publisher: SIAM
ISBN: 1611973163
Category : Mathematics
Languages : en
Pages : 286
Book Description
This classic book provides a rigorous treatment of the Riesz?Fredholm theory of compact operators in dual systems, followed by a derivation of the jump relations and mapping properties of scalar and vector potentials in spaces of continuous and H?lder continuous functions. These results are then used to study scattering problems for the Helmholtz and Maxwell equations. Readers will benefit from a full discussion of the mapping properties of scalar and vector potentials in spaces of continuous and H?lder continuous functions, an in-depth treatment of the use of boundary integral equations to solve scattering problems for acoustic and electromagnetic waves, and an introduction to inverse scattering theory with an emphasis on the ill-posedness and nonlinearity of the inverse scattering problem.
Publisher: SIAM
ISBN: 1611973163
Category : Mathematics
Languages : en
Pages : 286
Book Description
This classic book provides a rigorous treatment of the Riesz?Fredholm theory of compact operators in dual systems, followed by a derivation of the jump relations and mapping properties of scalar and vector potentials in spaces of continuous and H?lder continuous functions. These results are then used to study scattering problems for the Helmholtz and Maxwell equations. Readers will benefit from a full discussion of the mapping properties of scalar and vector potentials in spaces of continuous and H?lder continuous functions, an in-depth treatment of the use of boundary integral equations to solve scattering problems for acoustic and electromagnetic waves, and an introduction to inverse scattering theory with an emphasis on the ill-posedness and nonlinearity of the inverse scattering problem.
Green's Function Integral Equation Methods in Nano-Optics
Author: Thomas M. Søndergaard
Publisher: CRC Press
ISBN: 1351260197
Category : Technology & Engineering
Languages : en
Pages : 418
Book Description
This book gives a comprehensive introduction to Green’s function integral equation methods (GFIEMs) for scattering problems in the field of nano-optics. First, a brief review is given of the most important theoretical foundations from electromagnetics, optics, and scattering theory, including theory of waveguides, Fresnel reflection, and scattering, extinction, and absorption cross sections. This is followed by a presentation of different types of GFIEMs of increasing complexity for one-, two-, and three-dimensional scattering problems. In GFIEMs, the electromagnetic field at any position is directly related to the field at either the inside or the surface of a scattering object placed in a reference structure. The properties of the reference structure, and radiating or periodic boundary conditions, are automatically taken care of via the choice of Green’s function. This book discusses in detail how to solve the integral equations using either simple or higher-order finite-element-based methods; how to calculate the relevant Green’s function for different reference structures and choices of boundary conditions; and how to calculate near-fields, optical cross sections, and the power emitted by a local source. Solution strategies for large structures are discussed based on either transfer-matrix-approaches or the conjugate gradient algorithm combined with the Fast Fourier Transform. Special attention is given to reducing the computational problem for three-dimensional structures with cylindrical symmetry by using cylindrical harmonic expansions. Each presented method is accompanied by examples from nano-optics, including: resonant metal nano-particles placed in a homogeneous medium or on a surface or waveguide; a microstructured gradient-index-lens; the Purcell effect for an emitter in a photonic crystal; the excitation of surface plasmon polaritons by second-harmonic generation in a polymer fiber placed on a thin metal film; and anti-reflective, broadband absorbing or resonant surface microstructures. Each presented method is also accompanied by guidelines for software implementation and exercises. Features Comprehensive introduction to Green’s function integral equation methods for scattering problems in the field of nano-optics Detailed explanation of how to discretize and solve integral equations using simple and higher-order finite-element approaches Solution strategies for large structures Guidelines for software implementation and exercises Broad selection of examples of scattering problems in nano-optics
Publisher: CRC Press
ISBN: 1351260197
Category : Technology & Engineering
Languages : en
Pages : 418
Book Description
This book gives a comprehensive introduction to Green’s function integral equation methods (GFIEMs) for scattering problems in the field of nano-optics. First, a brief review is given of the most important theoretical foundations from electromagnetics, optics, and scattering theory, including theory of waveguides, Fresnel reflection, and scattering, extinction, and absorption cross sections. This is followed by a presentation of different types of GFIEMs of increasing complexity for one-, two-, and three-dimensional scattering problems. In GFIEMs, the electromagnetic field at any position is directly related to the field at either the inside or the surface of a scattering object placed in a reference structure. The properties of the reference structure, and radiating or periodic boundary conditions, are automatically taken care of via the choice of Green’s function. This book discusses in detail how to solve the integral equations using either simple or higher-order finite-element-based methods; how to calculate the relevant Green’s function for different reference structures and choices of boundary conditions; and how to calculate near-fields, optical cross sections, and the power emitted by a local source. Solution strategies for large structures are discussed based on either transfer-matrix-approaches or the conjugate gradient algorithm combined with the Fast Fourier Transform. Special attention is given to reducing the computational problem for three-dimensional structures with cylindrical symmetry by using cylindrical harmonic expansions. Each presented method is accompanied by examples from nano-optics, including: resonant metal nano-particles placed in a homogeneous medium or on a surface or waveguide; a microstructured gradient-index-lens; the Purcell effect for an emitter in a photonic crystal; the excitation of surface plasmon polaritons by second-harmonic generation in a polymer fiber placed on a thin metal film; and anti-reflective, broadband absorbing or resonant surface microstructures. Each presented method is also accompanied by guidelines for software implementation and exercises. Features Comprehensive introduction to Green’s function integral equation methods for scattering problems in the field of nano-optics Detailed explanation of how to discretize and solve integral equations using simple and higher-order finite-element approaches Solution strategies for large structures Guidelines for software implementation and exercises Broad selection of examples of scattering problems in nano-optics
Integral Equation Methods in Scattering Theory
Author: David Colton
Publisher: SIAM
ISBN: 1611973155
Category : Mathematics
Languages : en
Pages : 286
Book Description
This classic book provides a rigorous treatment of the Riesz?Fredholm theory of compact operators in dual systems, followed by a derivation of the jump relations and mapping properties of scalar and vector potentials in spaces of continuous and H?lder continuous functions. These results are then used to study scattering problems for the Helmholtz and Maxwell equations. Readers will benefit from a full discussion of the mapping properties of scalar and vector potentials in spaces of continuous and H?lder continuous functions, an in-depth treatment of the use of boundary integral equations to solve scattering problems for acoustic and electromagnetic waves, and an introduction to inverse scattering theory with an emphasis on the ill-posedness and nonlinearity of the inverse scattering problem.
Publisher: SIAM
ISBN: 1611973155
Category : Mathematics
Languages : en
Pages : 286
Book Description
This classic book provides a rigorous treatment of the Riesz?Fredholm theory of compact operators in dual systems, followed by a derivation of the jump relations and mapping properties of scalar and vector potentials in spaces of continuous and H?lder continuous functions. These results are then used to study scattering problems for the Helmholtz and Maxwell equations. Readers will benefit from a full discussion of the mapping properties of scalar and vector potentials in spaces of continuous and H?lder continuous functions, an in-depth treatment of the use of boundary integral equations to solve scattering problems for acoustic and electromagnetic waves, and an introduction to inverse scattering theory with an emphasis on the ill-posedness and nonlinearity of the inverse scattering problem.
Integral Equation Methods for Electromagnetics
Author: John L. Volakis
Publisher: IET
ISBN: 1891121936
Category : Mathematics
Languages : en
Pages : 407
Book Description
This text/reference is a detailed look at the development and use of integral equation methods for electromagnetic analysis, specifically for antennas and radar scattering. Developers and practitioners will appreciate the broad-based approach to understanding and utilizing integral equation methods and the unique coverage of historical developments that led to the current state-of-the-art. In contrast to existing books, Integral Equation Methods for Electromagnetics lays the groundwork in the initial chapters so students and basic users can solve simple problems and work their way up to the most advanced and current solutions.
Publisher: IET
ISBN: 1891121936
Category : Mathematics
Languages : en
Pages : 407
Book Description
This text/reference is a detailed look at the development and use of integral equation methods for electromagnetic analysis, specifically for antennas and radar scattering. Developers and practitioners will appreciate the broad-based approach to understanding and utilizing integral equation methods and the unique coverage of historical developments that led to the current state-of-the-art. In contrast to existing books, Integral Equation Methods for Electromagnetics lays the groundwork in the initial chapters so students and basic users can solve simple problems and work their way up to the most advanced and current solutions.
Forward and Inverse Scattering Algorithms Based on Contrast Source Integral Equations
Author: Peter M. van den Berg
Publisher: John Wiley & Sons
ISBN: 1119741564
Category : Science
Languages : en
Pages : 544
Book Description
A guide to wave-field computational methods based on contrast source type of integral equations Forward and Inverse Scattering Algorithms Based on Contrast Source Integral Equations presents a text that examines wave-field computational methods based on contrast source type of integral equations and the computational implementation in wave-field based imaging methods. Written by a noted expert on the topic, the book provides a guide to efficient methods for calculating wave fields in a known inhomogeneous medium. The author provides a link between the fundamental scattering theory and its discrete counterpart and discusses the forward scattering problem based on the contrast-source integral equations. The book fully describes the calculation of wave fields inside and outside a scattering object with general shape and material property and reviews the inverse scattering problem, in which material properties are resolved from wave-field measurements outside the scattering object. The theoretical approach is the inverse of the forward scattering problem that determines how radiation is scattered, based on the scattering object. This important book: Provides a guide to the effects of scalar waves, acoustic waves and electromagnetic waves Describes computer modeling in 1D, 2D and 3D models Includes an online site for computer codes with adjustable configurations Written for students, researchers, and professionals, Forward and Inverse Scattering Algorithms Based on Contrast Source Integral Equations offers a guide to wave-field computational methods based on contrast source type of integral equations and the computational implementation in wave-field based imaging methods.
Publisher: John Wiley & Sons
ISBN: 1119741564
Category : Science
Languages : en
Pages : 544
Book Description
A guide to wave-field computational methods based on contrast source type of integral equations Forward and Inverse Scattering Algorithms Based on Contrast Source Integral Equations presents a text that examines wave-field computational methods based on contrast source type of integral equations and the computational implementation in wave-field based imaging methods. Written by a noted expert on the topic, the book provides a guide to efficient methods for calculating wave fields in a known inhomogeneous medium. The author provides a link between the fundamental scattering theory and its discrete counterpart and discusses the forward scattering problem based on the contrast-source integral equations. The book fully describes the calculation of wave fields inside and outside a scattering object with general shape and material property and reviews the inverse scattering problem, in which material properties are resolved from wave-field measurements outside the scattering object. The theoretical approach is the inverse of the forward scattering problem that determines how radiation is scattered, based on the scattering object. This important book: Provides a guide to the effects of scalar waves, acoustic waves and electromagnetic waves Describes computer modeling in 1D, 2D and 3D models Includes an online site for computer codes with adjustable configurations Written for students, researchers, and professionals, Forward and Inverse Scattering Algorithms Based on Contrast Source Integral Equations offers a guide to wave-field computational methods based on contrast source type of integral equations and the computational implementation in wave-field based imaging methods.
Inverse Scattering Theory and Transmission Eigenvalues
Author: Fioralba Cakoni
Publisher: SIAM
ISBN: 1611974461
Category : Mathematics
Languages : en
Pages : 200
Book Description
Inverse scattering theory is a major theme of applied mathematics, and it has applications to such diverse areas as medical imaging, geophysical exploration, and nondestructive testing. The inverse scattering problem is both nonlinear and ill-posed, thus presenting particular problems in the development of efficient inversion algorithms. Although linearized models continue to play an important role in many applications, an increased need to focus on problems in which multiple scattering effects cannot be ignored has led to a central role for nonlinearity, and the possibility of collecting large amounts of data over limited regions of space means that the ill-posed nature of the inverse scattering problem has become a problem of central importance.? Initial efforts to address the nonlinear and the ill-posed nature of the inverse scattering problem focused on nonlinear optimization methods. While efficient in many situations, strong a priori information is necessary for their implementation. This problem led to a qualitative approach to inverse scattering theory in which the amount of a priori information is drastically reduced, although at the expense of only obtaining limited information about the values of the constitutive parameters. This qualitative approach (the linear sampling method, the factorization method, the theory of transmission eigenvalues, etc.) is the theme of Inverse Scattering Theory and Transmission Eigenvalues.? The authors begin with a basic introduction to the theory, then proceed to more recent developments, including a detailed discussion of the transmission eigenvalue problem; present the new generalized linear sampling method in addition to the well-known linear sampling and factorization methods; and in order to achieve clarification of presentation, focus on the inverse scattering problem for scalar homogeneous media.?
Publisher: SIAM
ISBN: 1611974461
Category : Mathematics
Languages : en
Pages : 200
Book Description
Inverse scattering theory is a major theme of applied mathematics, and it has applications to such diverse areas as medical imaging, geophysical exploration, and nondestructive testing. The inverse scattering problem is both nonlinear and ill-posed, thus presenting particular problems in the development of efficient inversion algorithms. Although linearized models continue to play an important role in many applications, an increased need to focus on problems in which multiple scattering effects cannot be ignored has led to a central role for nonlinearity, and the possibility of collecting large amounts of data over limited regions of space means that the ill-posed nature of the inverse scattering problem has become a problem of central importance.? Initial efforts to address the nonlinear and the ill-posed nature of the inverse scattering problem focused on nonlinear optimization methods. While efficient in many situations, strong a priori information is necessary for their implementation. This problem led to a qualitative approach to inverse scattering theory in which the amount of a priori information is drastically reduced, although at the expense of only obtaining limited information about the values of the constitutive parameters. This qualitative approach (the linear sampling method, the factorization method, the theory of transmission eigenvalues, etc.) is the theme of Inverse Scattering Theory and Transmission Eigenvalues.? The authors begin with a basic introduction to the theory, then proceed to more recent developments, including a detailed discussion of the transmission eigenvalue problem; present the new generalized linear sampling method in addition to the well-known linear sampling and factorization methods; and in order to achieve clarification of presentation, focus on the inverse scattering problem for scalar homogeneous media.?
Electromagnetic Theory of Gratings
Author: R. Petit
Publisher: Springer Science & Business Media
ISBN: 3642815006
Category : Science
Languages : en
Pages : 297
Book Description
When I was a student, in the early fifties, the properties of gratings were generally explained according to the scalar theory of optics. The grating formula (which pre dicts the diffraction angles for a given angle of incidence) was established, exper imentally verified, and intensively used as a source for textbook problems. Indeed those grating properties, we can call optical properties, were taught'in a satisfac tory manner and the students were able to clearly understand the diffraction and dispersion of light by gratings. On the other hand, little was said about the "energy properties", i. e. , about the prediction of efficiencies. Of course, the existence of the blaze effect was pointed out, but very frequently nothing else was taught about the efficiency curves. At most a good student had to know that, for an eche lette grating, the efficiency in a given order can approach unity insofar as the diffracted wave vector can be deduced from the incident one by a specular reflexion on the large facet. Actually this rule of thumb was generally sufficient to make good use of the optical gratings available about thirty years ago. Thanks to the spectacular improvements in grating manufacture after the end of the second world war, it became possible to obtain very good gratings with more and more lines per mm. Nowadays, in gratings used in the visible region, a spacing small er than half a micron is common.
Publisher: Springer Science & Business Media
ISBN: 3642815006
Category : Science
Languages : en
Pages : 297
Book Description
When I was a student, in the early fifties, the properties of gratings were generally explained according to the scalar theory of optics. The grating formula (which pre dicts the diffraction angles for a given angle of incidence) was established, exper imentally verified, and intensively used as a source for textbook problems. Indeed those grating properties, we can call optical properties, were taught'in a satisfac tory manner and the students were able to clearly understand the diffraction and dispersion of light by gratings. On the other hand, little was said about the "energy properties", i. e. , about the prediction of efficiencies. Of course, the existence of the blaze effect was pointed out, but very frequently nothing else was taught about the efficiency curves. At most a good student had to know that, for an eche lette grating, the efficiency in a given order can approach unity insofar as the diffracted wave vector can be deduced from the incident one by a specular reflexion on the large facet. Actually this rule of thumb was generally sufficient to make good use of the optical gratings available about thirty years ago. Thanks to the spectacular improvements in grating manufacture after the end of the second world war, it became possible to obtain very good gratings with more and more lines per mm. Nowadays, in gratings used in the visible region, a spacing small er than half a micron is common.
Multiple Scattering
Author: P. A. Martin
Publisher: Cambridge University Press
ISBN: 0521865549
Category : Mathematics
Languages : en
Pages : 13
Book Description
Publisher description
Publisher: Cambridge University Press
ISBN: 0521865549
Category : Mathematics
Languages : en
Pages : 13
Book Description
Publisher description
Acoustic and Electromagnetic Equations
Author: Jean-Claude Nedelec
Publisher: Springer Science & Business Media
ISBN: 9780387951553
Category : Computers
Languages : en
Pages : 356
Book Description
Acoustic and electromagnetic waves underlie a range of modern technology from sonar, radio, and television to microwave heating and electromagnetic compatibility analysis. This book, written by an international researcher, presents some of the research in a complete way. It is useful for graduate students in mathematics, physics, and engineering.
Publisher: Springer Science & Business Media
ISBN: 9780387951553
Category : Computers
Languages : en
Pages : 356
Book Description
Acoustic and electromagnetic waves underlie a range of modern technology from sonar, radio, and television to microwave heating and electromagnetic compatibility analysis. This book, written by an international researcher, presents some of the research in a complete way. It is useful for graduate students in mathematics, physics, and engineering.
Linear Integral Equations
Author: Rainer Kress
Publisher: Springer Science & Business Media
ISBN: 1461495938
Category : Mathematics
Languages : en
Pages : 427
Book Description
This book combines theory, applications, and numerical methods, and covers each of these fields with the same weight. In order to make the book accessible to mathematicians, physicists, and engineers alike, the author has made it as self-contained as possible, requiring only a solid foundation in differential and integral calculus. The functional analysis which is necessary for an adequate treatment of the theory and the numerical solution of integral equations is developed within the book itself. Problems are included at the end of each chapter. For this third edition in order to make the introduction to the basic functional analytic tools more complete the Hahn–Banach extension theorem and the Banach open mapping theorem are now included in the text. The treatment of boundary value problems in potential theory has been extended by a more complete discussion of integral equations of the first kind in the classical Holder space setting and of both integral equations of the first and second kind in the contemporary Sobolev space setting. In the numerical solution part of the book, the author included a new collocation method for two-dimensional hypersingular boundary integral equations and a collocation method for the three-dimensional Lippmann-Schwinger equation. The final chapter of the book on inverse boundary value problems for the Laplace equation has been largely rewritten with special attention to the trilogy of decomposition, iterative and sampling methods Reviews of earlier editions: "This book is an excellent introductory text for students, scientists, and engineers who want to learn the basic theory of linear integral equations and their numerical solution." (Math. Reviews, 2000) "This is a good introductory text book on linear integral equations. It contains almost all the topics necessary for a student. The presentation of the subject matter is lucid, clear and in the proper modern framework without being too abstract." (ZbMath, 1999)
Publisher: Springer Science & Business Media
ISBN: 1461495938
Category : Mathematics
Languages : en
Pages : 427
Book Description
This book combines theory, applications, and numerical methods, and covers each of these fields with the same weight. In order to make the book accessible to mathematicians, physicists, and engineers alike, the author has made it as self-contained as possible, requiring only a solid foundation in differential and integral calculus. The functional analysis which is necessary for an adequate treatment of the theory and the numerical solution of integral equations is developed within the book itself. Problems are included at the end of each chapter. For this third edition in order to make the introduction to the basic functional analytic tools more complete the Hahn–Banach extension theorem and the Banach open mapping theorem are now included in the text. The treatment of boundary value problems in potential theory has been extended by a more complete discussion of integral equations of the first kind in the classical Holder space setting and of both integral equations of the first and second kind in the contemporary Sobolev space setting. In the numerical solution part of the book, the author included a new collocation method for two-dimensional hypersingular boundary integral equations and a collocation method for the three-dimensional Lippmann-Schwinger equation. The final chapter of the book on inverse boundary value problems for the Laplace equation has been largely rewritten with special attention to the trilogy of decomposition, iterative and sampling methods Reviews of earlier editions: "This book is an excellent introductory text for students, scientists, and engineers who want to learn the basic theory of linear integral equations and their numerical solution." (Math. Reviews, 2000) "This is a good introductory text book on linear integral equations. It contains almost all the topics necessary for a student. The presentation of the subject matter is lucid, clear and in the proper modern framework without being too abstract." (ZbMath, 1999)