MEMS and Microfluidics in Healthcare

MEMS and Microfluidics in Healthcare PDF Author: Koushik Guha
Publisher: Springer Nature
ISBN: 9811987149
Category : Technology & Engineering
Languages : en
Pages : 251

Book Description
The book introduces the research significance of biomedical instrumentation and discusses micro-fabrication techniques utilized for biomedical devices. This book primarily focuses on the reader enlightenment on MEMS medical devices by introducing all the diagnostic devices and treatment tools at one place. The book covers in-depth technical works and general introductions to the devices such that the book can reach technical as well as non-technical readers.

Microfluidic Technologies for Human Health

Microfluidic Technologies for Human Health PDF Author: Utkan Demirci
Publisher: World Scientific
ISBN: 9814405515
Category : Medical
Languages : en
Pages : 495

Book Description
Ch. 1. A microscale bioinspired cochlear-like sensor / Robert D. White, Robert Littrell, and Karl Grosh -- ch. 2. Systematic evaluation of the efficiencies of proteins and chemicals in pharmaceutical applications / Morgan Hamon and Jong Wook Hong -- ch. 3. Microfluidic glucose sensors / Jithesh V. Veetil [und weitere] -- ch. 4. Applications of microfabrication and microfluidic techniques in mesenchymal stem cell research / Abhijit Majumder [und weitere] -- ch. 5. Patient-specific modeling of low-density lipoprotein transport in coronary arteries / Ufuk Olgac -- ch. 6. Point-of-care microdevices for global health diagnostics of infectious diseases / Sau Yin Chin [und weitere] -- ch. 7. Integrated microfluidic sample preparation for chip-based molecular diagnostics / Jane Y. Zhang [und weitere] -- ch. 8. Microfluidic devices for cellular proteomic studies / Yihong Zhan and Chang Lu -- ch. 9. Microfluidics for neuroscience: novel tools and future implications / Vivian M. Hernandez and P. Hande Ozdinler -- ch. 10. Microfluidics: on-chip platforms as in vitro disease models / Shan Gao, Erkin Seker, and Martin L. Yarmush -- ch. 11. Application of microfluidics in stem cell and tissue engineering / Sasha H. Bakhru, Christopher Highley, and Stefan Zappe -- ch. 12. Microfluidic "on-the-fly" fabrication of microstructures for biomedical applications / Edward Kang, Sau Fung Wong, and Sang-Hoon Lee -- ch. 13. Microfluidics as a promising tool toward distributed viral detection / Elodie Sollier and Dino Di Carlo -- ch. 14. Electrophoresis and dielectrophoresis for lab-on-a-chip (LOC) analyses / Yagmur Demircan, Gurkan Yilmaz, and Haluk Kulah -- ch. 15. Ultrasonic embossing of carbon nanotubes for the fabrication of polymer microfluidic chips for DNA sample purification / Puttachat Khuntontong, Min Gong, and Zhiping Wang -- ch. 16. Ferrofluidics / A. Rezzan Kose and Hur Koser -- ch. 17. Antibody-based blood bioparticle capture and separation using microfluidics for global health / ZhengYuan Luo [und weitere] -- ch. 18. Applications of quantum dots for fluorescence imaging in biomedical research / ShuQi Wang [und weitere]

Mems for Biomedical Applications

Mems for Biomedical Applications PDF Author: Shekhar Bhansali
Publisher: Elsevier
ISBN: 0857096273
Category : Technology & Engineering
Languages : en
Pages : 512

Book Description
The application of Micro Electro Mechanical Systems (MEMS) in the biomedical field is leading to a new generation of medical devices. MEMS for biomedical applications reviews the wealth of recent research on fabrication technologies and applications of this exciting technology. The book is divided into four parts: Part one introduces the fundamentals of MEMS for biomedical applications, exploring the microfabrication of polymers and reviewing sensor and actuator mechanisms. Part two describes applications of MEMS for biomedical sensing and diagnostic applications. MEMS for in vivo sensing and electrical impedance spectroscopy are investigated, along with ultrasonic transducers, and lab-on-chip devices. MEMS for tissue engineering and clinical applications are the focus of part three, which considers cell culture and tissue scaffolding devices, BioMEMS for drug delivery and minimally invasive medical procedures. Finally, part four reviews emerging biomedical applications of MEMS, from implantable neuroprobes and ocular implants to cellular microinjection and hybrid MEMS. With its distinguished editors and international team of expert contributors, MEMS for biomedical applications provides an authoritative review for scientists and manufacturers involved in the design and development of medical devices as well as clinicians using this important technology. Reviews the wealth of recent research on fabrication technologies and applications of Micro Electro Mechanical Systems (MEMS) in the biomedical field Introduces the fundamentals of MEMS for biomedical applications, exploring the microfabrication of polymers and reviewing sensor and actuator mechanisms Considers MEMS for biomedical sensing and diagnostic applications, along with MEMS for in vivo sensing and electrical impedance spectroscopy

Advances in MEMS and Microfluidic Systems

Advances in MEMS and Microfluidic Systems PDF Author: Rakesh Kumar Phanden
Publisher:
ISBN: 9781668469538
Category : Microelectromechanical systems
Languages : en
Pages : 0

Book Description
"Advances in MEMS and Microfluidic Systems explores the emerging research and advances in MEMS device and microfluidic systems applications. It features in-depth chapters on microfluidic device design and fabrication as well as on the aspects of devices/systems, characterization, and comparative research findings. Covering topics such as biosensors, lab-on-a-chip, and microfluidic technology, this premier reference source is an indispensable resource for engineers, health professionals, students and educators of higher education, librarians, researchers, and academicians"--

Fundamentals of BioMEMS and Medical Microdevices

Fundamentals of BioMEMS and Medical Microdevices PDF Author: Steven Saliterman
Publisher: SPIE Press
ISBN: 9780819459770
Category : Medical
Languages : en
Pages : 644

Book Description
The world is on the threshold of a revolution that will change medicine and how patients are treated forever. Bringing together the creative talents of electrical, mechanical, optical and chemical engineers, materials specialists, clinical-laboratory scientists, and physicians, the science of biomedical microelectromechanical systems (bioMEMS) promises to deliver sensitive, selective, fast, low cost, less invasive, and more robust methods for diagnostics, individualized treatment, and novel drug delivery. This book is an introduction to this multidisciplinary technology and the current state of micromedical devices in use today. The first text of its kind dedicated to bioMEMS training. Fundamentals of BioMEMS and Medical Microdevices is Suitable for a single semester course for senior and graduate-level students, or as an introduction to others interested or already working in the field.

Microfluidic Devices for Biomedical Applications

Microfluidic Devices for Biomedical Applications PDF Author: Xiujun (James) Li
Publisher: Woodhead Publishing
ISBN: 0128227559
Category : Technology & Engineering
Languages : en
Pages : 724

Book Description
Microfluidic Devices for Biomedical Applications, Second Edition provides updated coverage on the fundamentals of microfluidics, while also exploring a wide range of medical applications. Chapters review materials and methods, microfluidic actuation mechanisms, recent research on droplet microfluidics, applications in drug discovery and controlled-delivery, including micro needles, consider applications of microfluidic devices in cellular analysis and manipulation, tissue engineering and their role in developing tissue scaffolds, and cover the applications of microfluidic devices in diagnostic sensing, including genetic analysis, low-cost bioassays, viral detection, and radio chemical synthesis. This book is an essential reference for medical device manufacturers, scientists and researchers concerned with microfluidics in the field of biomedical applications and life-science industries. Discusses the fundamentals of microfluidics or lab-on-a-chip (LOC) and explores a wide range of medical applications Considers materials and methods for microfabrication, microfluidic actuation mechanisms and digital microfluidic technologies Details applications of microfluidic devices in cellular analysis and manipulation, tissue engineering and its role in developing tissue scaffolds, and stem cell engineering

Microfluidic Devices for Biomedical Applications

Microfluidic Devices for Biomedical Applications PDF Author: Xiujun James Li
Publisher: Woodhead Publishing
ISBN: 9780857096975
Category : Technology & Engineering
Languages : en
Pages : 0

Book Description
Microfluidics or lab-on-a-chip (LOC) is an important technology suitable for numerous applications from drug delivery to tissue engineering. Microfluidic devices for biomedical applications discusses the fundamentals of microfluidics and explores in detail a wide range of medical applications. The first part of the book reviews the fundamentals of microfluidic technologies for biomedical applications with chapters focussing on the materials and methods for microfabrication, microfluidic actuation mechanisms and digital microfluidic technologies. Chapters in part two examine applications in drug discovery and controlled-delivery including micro needles. Part three considers applications of microfluidic devices in cellular analysis and manipulation, tissue engineering and their role in developing tissue scaffolds and stem cell engineering. The final part of the book covers the applications of microfluidic devices in diagnostic sensing, including genetic analysis, low-cost bioassays, viral detection, and radio chemical synthesis. Microfluidic devices for biomedical applications is an essential reference for medical device manufacturers, scientists and researchers concerned with microfluidics in the field of biomedical applications and life-science industries.

Design and Development of Affordable Healthcare Technologies

Design and Development of Affordable Healthcare Technologies PDF Author: Bit, Arindam
Publisher: IGI Global
ISBN: 1522549706
Category : Medical
Languages : en
Pages : 388

Book Description
Technological advancements in the last few decades have significantly revolutionized the healthcare industry, resulting in life expectancy improvement in human beings. The use of automated machines in healthcare has reduced human errors and has notably improved disease diagnosis efficiency. Design and Development of Affordable Healthcare Technologies provides emerging research on biomedical instrumentation, bio-signal processing, and device development within the healthcare industry. This book provides insight into various subjects including patient monitoring, medical imaging, and disease classification. This book is a vital reference source for medical professionals, biomedical engineers, scientists, researchers, and medical students interested in the comprehensive research on the advancements in healthcare technologies.

On-chip Pretreatment of Whole Blood by Using MEMS Technology

On-chip Pretreatment of Whole Blood by Using MEMS Technology PDF Author: Xing Chen
Publisher: Bentham Science Publishers
ISBN: 1608051471
Category : Technology & Engineering
Languages : en
Pages : 123

Book Description
Microfabrication technology has stimulated a plurality of lab-on-a-chip research and development efforts aimed at enabling biomedical researchers and health care practitioners to manipulate and analyze complex biological fluids at the nano and microliter

Microfluidics and BioMEMS Applications

Microfluidics and BioMEMS Applications PDF Author: Francis E. H. Tay
Publisher: Springer Science & Business Media
ISBN: 1475735340
Category : Technology & Engineering
Languages : en
Pages : 346

Book Description
Microfluidics and BioMEMS Applications central idea is on microfluidics, a relatively new research field which finds its niche in biomedical devices, especially on lab-on-a-chip and related products. Being the essential component in providing driving fluidic flows, an example of micropump is chosen to illustrate a complete cycle in development of microfluidic devices which include literature review, designing and modelling, fabrication and testing. A few articles are included to demonstrate the idea of tackling this research problem, and they cover the main development scope discussed earlier as well as other advanced modelling schemes for microfluidics and beyond. Scientists and students working in the areas of MEMS and microfluidics will benefit from this book, which may serve both communities as both a reference monograph and a textbook for courses in numerical simulation, and design and development of microfluidic devices.