Scattering and Localization of Classical Waves in Random Media PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Scattering and Localization of Classical Waves in Random Media PDF full book. Access full book title Scattering and Localization of Classical Waves in Random Media by Ping Sheng. Download full books in PDF and EPUB format.

Scattering and Localization of Classical Waves in Random Media

Scattering and Localization of Classical Waves in Random Media PDF Author: Ping Sheng
Publisher: World Scientific
ISBN: 9789971505394
Category : Science
Languages : en
Pages : 660

Book Description
The past decade has witnessed breakthroughs in the understanding of the wave localization phenomena and its implications for wave multiple scattering in inhomogeneous media. This book brings together review articles written by noted researchers in this field in a tutorial manner so as to give the readers a coherent picture of its status. It would be valuable both as an up-to-date reference for active researchers as well as a readable source for students looking to gain an understanding of the latest results.

Scattering and Localization of Classical Waves in Random Media

Scattering and Localization of Classical Waves in Random Media PDF Author: Ping Sheng
Publisher: World Scientific
ISBN: 9789971505394
Category : Science
Languages : en
Pages : 660

Book Description
The past decade has witnessed breakthroughs in the understanding of the wave localization phenomena and its implications for wave multiple scattering in inhomogeneous media. This book brings together review articles written by noted researchers in this field in a tutorial manner so as to give the readers a coherent picture of its status. It would be valuable both as an up-to-date reference for active researchers as well as a readable source for students looking to gain an understanding of the latest results.

Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena

Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena PDF Author: Ping Sheng
Publisher: Elsevier
ISBN: 9780080535067
Category : Science
Languages : en
Pages : 339

Book Description
This book gives readers a coherent picture of waves in disordered media, including multiple scattered waves. The book is intended to be self-contained, with illustrated problems and solutions at the end of each chapter to serve the double purpose of filling out the technical and mathematical details and giving the students exercises if used as a course textbook. The study of wave behavior in disordered media has applications in: Condensed matter physics (semi and superconductor nanostructures and mesoscopic phenomena) Materials science/analytical chemistry (analysis of composite and crystalline structures and properties) Optics and electronics (microelectronic and optoelectronic devices) Geology (seismic exploration of Earths subsurface)

Wave Propagation and Scattering in Random Media

Wave Propagation and Scattering in Random Media PDF Author: Akira Ishimaru
Publisher: John Wiley & Sons
ISBN: 9780780347175
Category : Education
Languages : en
Pages : 608

Book Description
Electrical Engineering Wave Propagation and Scattering in Random Media A volume in the IEEE/OUP Series on Electromagnetic Wave Theory Donald G. Dudley, Series Editor This IEEE Classic Reissue presents a unified introduction to the fundamental theories and applications of wave propagation and scattering in random media. Now for the first time, the two volumes of Wave Propagation and Scattering in Random Media previously published by Academic Press in 1978 are combined into one comprehensive volume. This book presents a clear picture of how waves interact with the atmosphere, terrain, ocean, turbulence, aerosols, rain, snow, biological tissues, composite material, and other media. The theories presented will enable you to solve a variety of problems relating to clutter, interference, imaging, object detection, and communication theory for various media. This book is expressly designed for engineers and scientists who have an interest in optical, microwave, or acoustic wave propagation and scattering. Topics covered include: Wave characteristics in aerosols and hydrometeors Optical and acoustic scattering in sea water Scattering from biological materials Pulse scattering and beam wave propagation in such media Optical diffusion in tissues and blood Transport and radiative transfer theory Kubelka—Munk flux theory and plane-parallel problem Multiple scattering theory Wave fluctuations in turbulence Strong fluctuation theory Rough surface scattering Remote sensing and inversion techniques Imaging through various media About the IEEE/OUP Series on Electromagnetic Wave Theory Formerly the IEEE Press Series on Electromagnetic Waves, this joint series between IEEE Press and Oxford University Press offers outstanding coverage of the field with new titles as well as reprintings and revisions of recognized classics that maintain long-term archival significance in electromagnetic waves and applications. Designed specifically for graduate students, practicing engineers, and researchers, this series provides affordable volumes that explore electromagnetic waves and applications beyond the undergraduate level. See page il of the front matter for a listing of books in this series.

Wave Scattering in Complex Media: From Theory to Applications

Wave Scattering in Complex Media: From Theory to Applications PDF Author: Bart A. van Tiggelen
Publisher: Springer Science & Business Media
ISBN: 9401002274
Category : Technology & Engineering
Languages : en
Pages : 622

Book Description
A collection of lectures on a variety of modern subjects in wave scattering, including fundamental issues in mesoscopic physics and radiative transfer, recent hot topics such as random lasers, liquid crystals, lefthanded materials and time-reversal, as well as modern applications in imaging and communication. There is a strong emphasis on the interdisciplinary aspects of wave propagation, including light and microwaves, acoustic and elastic waves, propagating in a variety of "complex" materials (liquid crystals, media with gain, natural media, magneto-optical media, photonic and phononic materials, etc.). It addresses many different items in contemporary research: mesoscopic fluctuations, localization, radiative transfer, symmetry aspects, and time-reversal. It also discusses new (potential) applications in telecommunication, soft matter and imaging.

Optical Properties of Nanostructured Random Media

Optical Properties of Nanostructured Random Media PDF Author: Vladimir M. Shalaev
Publisher: Springer Science & Business Media
ISBN: 3540420312
Category : Science
Languages : en
Pages : 480

Book Description
The contributors to the book are world best experts in the optics of random media; they provide a state-of-the-art review of recent developments in the field including nonlinear optical and magneto-optical properties, Raman and hyper-Raman scattering, laser action, plasmon excitation and localized giant fields, imaging and spectroscopy of random media

Mathematics of Random Media

Mathematics of Random Media PDF Author: Werner E. Kohler
Publisher: American Mathematical Soc.
ISBN: 9780821896952
Category : Mathematics
Languages : en
Pages : 516

Book Description
In recent years, there has been remarkable growth in the mathematics of random media. The field has deep scientific and technological roots, as well as purely mathematical ones in the theory of stochastic processes. This collection of papers by leading researchers provides an overview of this rapidly developing field. The papers were presented at the 1989 AMS-SIAM Summer Seminar in Applied Mathematics, held at Virginia Polytechnic Institute and State University in Blacksburg, Virginia. In addition to new results on stochastic differential equations and Markov processes, fields whose elegant mathematical techniques are of continuing value in application areas, the conference was organized around four themes: Systems of interacting particles are normally viewed in connection with the fundamental problems of statistical mechanics, but have also been used to model diverse phenomena such as computer architectures and the spread of biological populations. Powerful mathematical techniques have been developed for their analysis, and a number of important systems are now well understood. Random perturbations of dynamical systems have also been used extensively as models in physics, chemistry, biology, and engineering. Among the recent unifying mathematical developments is the theory of large deviations, which enables the accurate calculation of the probabilities of rare events. For these problems, approaches based on effective but formal perturbation techniques parallel rigorous mathematical approaches from probability theory and partial differential equations. The book includes representative papers from forefront research of both types. Effective medium theory, otherwise known as the mathematical theory of homogenization, consists of techniques for predicting the macroscopic properties of materials from an understanding of their microstructures. For example, this theory is fundamental in the science of composites, where it is used for theoretical determination of electrical and mechanical properties. Furthermore, the inverse problem is potentially of great technological importance in the design of composite materials which have been optimized for some specific use. Mathematical theories of the propagation of waves in random media have been used to understand phenomena as diverse as the twinkling of stars, the corruption of data in geophysical exploration, and the quantum mechanics of disordered solids. Especially effective methods now exist for waves in randomly stratified, one-dimensional media. A unifying theme is the mathematical phenomenon of localization, which occurs when a wave propogating into a random medium is attenuated exponentially with propagation distance, with the attenuation caused solely by the mechanism of random multiple scattering. Because of the wide applicability of this field of research, this book would appeal to mathematicians, scientists, and engineers in a wide variety of areas, including probabilistic methods, the theory of disordered materials, systems of interacting particles, the design of materials, and dynamical systems driven by noise. In addition, graduate students and others will find this book useful as an overview of current research in random media.

Diffuse Waves in Complex Media

Diffuse Waves in Complex Media PDF Author: Jean-Pierre Fouque
Publisher: Springer Science & Business Media
ISBN: 9401145725
Category : Science
Languages : en
Pages : 462

Book Description
The NATO Advanced Study Institute on Diffuse Waves in Complex Media was held at the "Centre de Physique des Houches" in France from March 17 to 27, 1998. The Schools' scientific content, wave propagation in heterogeneous me dia, has covered many areas of fundamental and applied research. On the one hand, the understanding of wave propagation has considerably improved during the last thirty years. New developments and concepts such as, speckle correlations, weak and strong localization, time reversal, near-field propagation are under active research. On the other hand, wave propagation in random media is now being investigated in many different fields such as applied mathematics, acoustics, optics, atomic physics, geo physics or medical sciences. Each community often uses its own langage to describe the same phenomena. The aim of the School was to gather worldwide specialists to illuminate various aspects of wave propagation in random media. This volume presents fourteen expository articles corresponding to courses and seminars given during the School. They are arranged as follows. The first three articles deal with the phenomena of localization of waves: B. van Tiggelen (p. 1) gives a critical review of the physics of localization, J. Lacroix (p. 61) presents the mathematical theory and A. Klein (p. 73) describes recent results for randomized periodic media.

Stochastic Equations: Theory and Applications in Acoustics, Hydrodynamics, Magnetohydrodynamics, and Radiophysics, Volume 2

Stochastic Equations: Theory and Applications in Acoustics, Hydrodynamics, Magnetohydrodynamics, and Radiophysics, Volume 2 PDF Author: Valery I. Klyatskin
Publisher: Springer
ISBN: 331907590X
Category : Technology & Engineering
Languages : en
Pages : 491

Book Description
In some cases, certain coherent structures can exist in stochastic dynamic systems almost in every particular realization of random parameters describing these systems. Dynamic localization in one-dimensional dynamic systems, vortexgenesis (vortex production) in hydrodynamic flows, and phenomenon of clustering of various fields in random media (i.e., appearance of small regions with enhanced content of the field against the nearly vanishing background of this field in the remaining portion of space) are examples of such structure formation. The general methodology presented in Volume 1 is used in Volume 2 Coherent Phenomena in Stochastic Dynamic Systems to expound the theory of these phenomena in some specific fields of stochastic science, among which are hydrodynamics, magnetohydrodynamics, acoustics, optics, and radiophysics. The material of this volume includes particle and field clustering in the cases of scalar (density field) and vector (magnetic field) passive tracers in a random velocity field, dynamic localization of plane waves in layered random media, as well as monochromatic wave propagation and caustic structure formation in random media in terms of the scalar parabolic equation.

Nanoparticles

Nanoparticles PDF Author: Anatol M. Brodsky
Publisher: Walter de Gruyter
ISBN: 3110267349
Category : Technology & Engineering
Languages : en
Pages : 117

Book Description
Many objects of physical, biological, and industrial interest include randomly distributed nanoscale nonuniformities, e.g., nanoparticles. Their characterization online in dynamic industrial processes and in situ in biological systems faces serious practical challenges when the rapid formation and distribution of nanoparticles takes place. This book discusses optical sensing techniques – the best tools for nanoparticle monitoring, as they are fast, non-invasive, and provide a broad range of information in real time. It provides a theoretical model for the relation between observed signals and studied system properties. The application of these methods enables the analysis of particle suspensions, colloidal dispersions, and polymer solutions leading to new medical diagnostics and therapies.

Introduction to Wave Scattering, Localization and Mesoscopic Phenomena

Introduction to Wave Scattering, Localization and Mesoscopic Phenomena PDF Author: Ping Sheng
Publisher: Springer Science & Business Media
ISBN: 3540291563
Category : Science
Languages : en
Pages : 341

Book Description
Waves represent an important topic of study in physics, mathematics, and engineering. This volume is a resource book for those interested in understanding the physics underlying nanotechnology and mesoscopic phenomena. It aims to bridge the gap between the textbooks and research frontiers in wave related topics.