Quantitative Genetics, Genomics and Plant Breeding, 2nd Edition PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Quantitative Genetics, Genomics and Plant Breeding, 2nd Edition PDF full book. Access full book title Quantitative Genetics, Genomics and Plant Breeding, 2nd Edition by Manjit S. Kang. Download full books in PDF and EPUB format.

Quantitative Genetics, Genomics and Plant Breeding, 2nd Edition

Quantitative Genetics, Genomics and Plant Breeding, 2nd Edition PDF Author: Manjit S. Kang
Publisher: CABI
ISBN: 1789240212
Category : Science
Languages : en
Pages : 433

Book Description
This book presents state-of-the-art, authoritative chapters on contemporary issues in the broad areas of quantitative genetics, genomics and plant breeding. Section 1 (Chapters 2 to 12) emphasizes the application of genomics, and genome and epigenome editing techniques, in plant breeding; bioinformatics; quantitative trait loci mapping; and the latest approaches of examining and exploiting genotype-environment interactions. Section 2 (Chapters 13 to 20) represents the intersection of breeding, genetics and genomics. This section describes the use of cutting-edge molecular breeding and quantitative genetics techniques in wheat, rice, maize, root and tuber crops and pearl millet. Overall, the book focuses on using genomic information to help evaluate traits that can combat biotic/abiotic stresses, genome-wide association mapping, high-throughput genotyping/phenotyping, biofortification, use of big data, orphan crops, and gene editing techniques. The examples featured are taken from across crop science research and cover a wide geographical base.

Quantitative Genetics, Genomics and Plant Breeding, 2nd Edition

Quantitative Genetics, Genomics and Plant Breeding, 2nd Edition PDF Author: Manjit S. Kang
Publisher: CABI
ISBN: 1789240212
Category : Science
Languages : en
Pages : 433

Book Description
This book presents state-of-the-art, authoritative chapters on contemporary issues in the broad areas of quantitative genetics, genomics and plant breeding. Section 1 (Chapters 2 to 12) emphasizes the application of genomics, and genome and epigenome editing techniques, in plant breeding; bioinformatics; quantitative trait loci mapping; and the latest approaches of examining and exploiting genotype-environment interactions. Section 2 (Chapters 13 to 20) represents the intersection of breeding, genetics and genomics. This section describes the use of cutting-edge molecular breeding and quantitative genetics techniques in wheat, rice, maize, root and tuber crops and pearl millet. Overall, the book focuses on using genomic information to help evaluate traits that can combat biotic/abiotic stresses, genome-wide association mapping, high-throughput genotyping/phenotyping, biofortification, use of big data, orphan crops, and gene editing techniques. The examples featured are taken from across crop science research and cover a wide geographical base.

Quantitative Genetics in Maize Breeding

Quantitative Genetics in Maize Breeding PDF Author: Arnel R. Hallauer
Publisher: Springer Science & Business Media
ISBN: 1441907661
Category : Science
Languages : en
Pages : 669

Book Description
Maize is used in an endless list of products that are directly or indirectly related to human nutrition and food security. Maize is grown in producer farms, farmers depend on genetically improved cultivars, and maize breeders develop improved maize cultivars for farmers. Nikolai I. Vavilov defined plant breeding as plant evolution directed by man. Among crops, maize is one of the most successful examples for breeder-directed evolution. Maize is a cross-pollinated species with unique and separate male and female organs allowing techniques from both self and cross-pollinated crops to be utilized. As a consequence, a diverse set of breeding methods can be utilized for the development of various maize cultivar types for all economic conditions (e.g., improved populations, inbred lines, and their hybrids for different types of markets). Maize breeding is the science of maize cultivar development. Public investment in maize breeding from 1865 to 1996 was $3 billion (Crosbie et al., 2004) and the return on investment was $260 billion as a consequence of applied maize breeding, even without full understanding of the genetic basis of heterosis. The principles of quantitative genetics have been successfully applied by maize breeders worldwide to adapt and improve germplasm sources of cultivars for very simple traits (e.g. maize flowering) and very complex ones (e.g., grain yield). For instance, genomic efforts have isolated early-maturing genes and QTL for potential MAS but very simple and low cost phenotypic efforts have caused significant and fast genetic progress across genotypes moving elite tropical and late temperate maize northward with minimal investment. Quantitative genetics has allowed the integration of pre-breeding with cultivar development by characterizing populations genetically, adapting them to places never thought of (e.g., tropical to short-seasons), improving them by all sorts of intra- and inter-population recurrent selection methods, extracting lines with more probability of success, and exploiting inbreeding and heterosis. Quantitative genetics in maize breeding has improved the odds of developing outstanding maize cultivars from genetically broad based improved populations such as B73. The inbred-hybrid concept in maize was a public sector invention 100 years ago and it is still considered one of the greatest achievements in plant breeding. Maize hybrids grown by farmers today are still produced following this methodology and there is still no limit to genetic improvement when most genes are targeted in the breeding process. Heterotic effects are unique for each hybrid and exotic genetic materials (e.g., tropical, early maturing) carry useful alleles for complex traits not present in the B73 genome just sequenced while increasing the genetic diversity of U.S. hybrids. Breeding programs based on classical quantitative genetics and selection methods will be the basis for proving theoretical approaches on breeding plans based on molecular markers. Mating designs still offer large sample sizes when compared to QTL approaches and there is still a need to successful integration of these methods. There is a need to increase the genetic diversity of maize hybrids available in the market (e.g., there is a need to increase the number of early maturing testers in the northern U.S.). Public programs can still develop new and genetically diverse products not available in industry. However, public U.S. maize breeding programs have either been discontinued or are eroding because of decreasing state and federal funding toward basic science. Future significant genetic gains in maize are dependent on the incorporation of useful and unique genetic diversity not available in industry (e.g., NDSU EarlyGEM lines). The integration of pre-breeding methods with cultivar development should enhance future breeding efforts to maintain active public breeding programs not only adapting and improving genetically broad-based germplasm but also developing unique products and training the next generation of maize breeders producing research dissertations directly linked to breeding programs. This is especially important in areas where commercial hybrids are not locally bred. More than ever public and private institutions are encouraged to cooperate in order to share breeding rights, research goals, winter nurseries, managed stress environments, and latest technology for the benefit of producing the best possible hybrids for farmers with the least cost. We have the opportunity to link both classical and modern technology for the benefit of breeding in close cooperation with industry without the need for investing in academic labs and time (e.g., industry labs take a week vs months/years in academic labs for the same work). This volume, as part of the Handbook of Plant Breeding series, aims to increase awareness of the relative value and impact of maize breeding for food, feed, and fuel security. Without breeding programs continuously developing improved germplasm, no technology can develop improved cultivars. Quantitative Genetics in Maize Breeding presents principles and data that can be applied to maximize genetic improvement of germplasm and develop superior genotypes in different crops. The topics included should be of interest of graduate students and breeders conducting research not only on breeding and selection methods but also developing pure lines and hybrid cultivars in crop species. This volume is a unique and permanent contribution to breeders, geneticists, students, policy makers, and land-grant institutions still promoting quality research in applied plant breeding as opposed to promoting grant monies and indirect costs at any short-term cost. The book is dedicated to those who envision the development of the next generation of cultivars with less need of water and inputs, with better nutrition; and with higher percentages of exotic germplasm as well as those that pursue independent research goals before searching for funding. Scientists are encouraged to use all possible breeding methodologies available (e.g., transgenics, classical breeding, MAS, and all possible combinations could be used with specific sound long and short-term goals on mind) once germplasm is chosen making wise decisions with proven and scientifically sound technologies for assisting current breeding efforts depending on the particular trait under selection. Arnel R. Hallauer is C. F. Curtiss Distinguished Professor in Agriculture (Emeritus) at Iowa State University (ISU). Dr. Hallauer has led maize-breeding research for mid-season maturity at ISU since 1958. His work has had a worldwide impact on plant-breeding programs, industry, and students and was named a member of the National Academy of Sciences. Hallauer is a native of Kansas, USA. José B. Miranda Filho is full-professor in the Department of Genetics, Escola Superior de Agricultura Luiz de Queiroz - University of São Paulo located at Piracicaba, Brazil. His research interests have emphasized development of quantitative genetic theory and its application to maize breeding. Miranda Filho is native of Pirassununga, São Paulo, Brazil. M.J. Carena is professor of plant sciences at North Dakota State University (NDSU). Dr. Carena has led maize-breeding research for short-season maturity at NDSU since 1999. This program is currently one the of the few public U.S. programs left integrating pre-breeding with cultivar development and training in applied maize breeding. He teaches Quantitative Genetics and Crop Breeding Techniques at NDSU. Carena is a native of Buenos Aires, Argentina. http://www.ag.ndsu.nodak.edu/plantsci/faculty/Carena.htm

Quantitative Genetics and Crop Breeding

Quantitative Genetics and Crop Breeding PDF Author: Thirugnanakumar S
Publisher: New India Publishing Agency
ISBN: 9789380235981
Category : Science
Languages : en
Pages : 256

Book Description
The present work is unique in that sense it gives formulae along with actual data analyzed for the easy understanding. This book is mainly meant for post graduate and research scholars in Quantitative Genetics. A careful perusal of the book will give clear cut idea about the interpretation of the data and formulation of breeding strategies.

Breeding for Quantitative Traits in Plants

Breeding for Quantitative Traits in Plants PDF Author: Rex Novero Bernardo
Publisher:
ISBN: 9780972072434
Category : Plant breeding
Languages : en
Pages : 422

Book Description


Genetic Data Analysis for Plant and Animal Breeding

Genetic Data Analysis for Plant and Animal Breeding PDF Author: Fikret Isik
Publisher: Springer
ISBN: 3319551779
Category : Science
Languages : en
Pages : 400

Book Description
This book fills the gap between textbooks of quantitative genetic theory, and software manuals that provide details on analytical methods but little context or perspective on which methods may be most appropriate for a particular application. Accordingly this book is composed of two sections. The first section (Chapters 1 to 8) covers topics of classical phenotypic data analysis for prediction of breeding values in animal and plant breeding programs. In the second section (Chapters 9 to 13) we provide the concept and overall review of available tools for using DNA markers for predictions of genetic merits in breeding populations. With advances in DNA sequencing technologies, genomic data, especially single nucleotide polymorphism (SNP) markers, have become available for animal and plant breeding programs in recent years. Analysis of DNA markers for prediction of genetic merit is a relatively new and active research area. The algorithms and software to implement these algorithms are changing rapidly. This section represents state-of-the-art knowledge on the tools and technologies available for genetic analysis of plants and animals. However, readers should be aware that the methods or statistical packages covered here may not be available or they might be out of date in a few years. Ultimately the book is intended for professional breeders interested in utilizing these tools and approaches in their breeding programs. Lastly, we anticipate the usage of this volume for advanced level graduate courses in agricultural and breeding courses.

Quantitative Genetics and Selection in Plant Breeding

Quantitative Genetics and Selection in Plant Breeding PDF Author: Günter Wricke
Publisher: Walter de Gruyter
ISBN: 3110837528
Category : Science
Languages : en
Pages : 421

Book Description
Quantitative Genetics and Selection in Plant Breeding.

Molecular Plant Breeding

Molecular Plant Breeding PDF Author: Yunbi Xu
Publisher: CABI
ISBN: 1845936248
Category : Science
Languages : en
Pages : 756

Book Description
Recent advances in plant genomics and molecular biology have revolutionized our understanding of plant genetics, providing new opportunities for more efficient and controllable plant breeding. Successful techniques require a solid understanding of the underlying molecular biology as well as experience in applied plant breeding. Bridging the gap between developments in biotechnology and its applications in plant improvement, Molecular Plant Breeding provides an integrative overview of issues from basic theories to their applications to crop improvement including molecular marker technology, gene mapping, genetic transformation, quantitative genetics, and breeding methodology.

Principles of Plant Genetics and Breeding

Principles of Plant Genetics and Breeding PDF Author: George Acquaah
Publisher: John Wiley & Sons
ISBN: 1119626323
Category : Science
Languages : en
Pages : 855

Book Description
The revised edition of the bestselling textbook, covering both classical and molecular plant breeding Principles of Plant Genetics and Breeding integrates theory and practice to provide an insightful examination of the fundamental principles and advanced techniques of modern plant breeding. Combining both classical and molecular tools, this comprehensive textbook describes the multidisciplinary strategies used to produce new varieties of crops and plants, particularly in response to the increasing demands to of growing populations. Illustrated chapters cover a wide range of topics, including plant reproductive systems, germplasm for breeding, molecular breeding, the common objectives of plant breeders, marketing and societal issues, and more. Now in its third edition, this essential textbook contains extensively revised content that reflects recent advances and current practices. Substantial updates have been made to its molecular genetics and breeding sections, including discussions of new breeding techniques such as zinc finger nuclease, oligonucleotide directed mutagenesis, RNA-dependent DNA methylation, reverse breeding, genome editing, and others. A new table enables efficient comparison of an expanded list of molecular markers, including Allozyme, RFLPs, RAPD, SSR, ISSR, DAMD, AFLP, SNPs and ESTs. Also, new and updated “Industry Highlights” sections provide examples of the practical application of plant breeding methods to real-world problems. This new edition: Organizes topics to reflect the stages of an actual breeding project Incorporates the most recent technologies in the field, such as CRSPR genome edition and grafting on GM stock Includes numerous illustrations and end-of-chapter self-assessment questions, key references, suggested readings, and links to relevant websites Features a companion website containing additional artwork and instructor resources Principles of Plant Genetics and Breeding offers researchers and professionals an invaluable resource and remains the ideal textbook for advanced undergraduates and graduates in plant science, particularly those studying plant breeding, biotechnology, and genetics.

Handbook of Formulas and Software for Plant Geneticists and Breeders

Handbook of Formulas and Software for Plant Geneticists and Breeders PDF Author: Manjit S. Kang
Publisher: CRC Press
ISBN: 9781560229490
Category : Science
Languages : en
Pages : 368

Book Description
A simple solution to complicated statistical techniques and formulas! The Handbook of Formulas and Software for Plant Geneticists and Breeders is an up-to-date reference source that eliminates the need for hand calculations of complicated genetic formulas and equations. Contributions from members of the C1 Division of the Crop Science Society of America include computer program codes not found in Statistical Analysis System (SAS) and other commonly available statistical packages. The book provides an invaluable shortcut to sorting through piles of literature in search of programs that may have been published in abbreviated forms or never at all. The Handbook of Formulas and Software for Plant Geneticists and Breeders puts full-fledged program codes of specialized statistical and genetics-related software programs at your fingertips. It shows practicing geneticists, breeders, and students how to use specialized software through practical examples. The book is an excellent research and teaching tool in quantitative genetics and plant breeding, providing definitions of key terms and information on how to obtain desired software and key references. It also includes an extensive listing of programs available for linkage and mapping software that can be accessed through the Internet. The Handbook of Formulas and Software for Plant Geneticists and Breeders presents, among others, programs related to: genotype-by-environmental interaction (GEI) and stability analysis genetic diversity estimation best linear unbiased predictors (BLUPs) principal component and additive main effects and multiplicative interaction (AMMI) analyses quantitative trait loci -by-environment (QTL x E) analysis GGE biplot analysis diallel analyses path analysis trend analysis field plot technique The Handbook of Formulas and Software for Plant Geneticists and Breeders is essential for academics and researchers working in genetics, breeding, and genomics, and as a supplement for coursework in quantitative genetics and plant breeding.

Genetics and Exploitation of Heterosis in Crops

Genetics and Exploitation of Heterosis in Crops PDF Author: J. G. Coors
Publisher:
ISBN: 9780891185499
Category : Electronic books
Languages : en
Pages : 0

Book Description
Explore the momentous contributions of hybrid crop varieties with worldwide experts. Topics include an overview, quantitative genetics, genetic diversity, biochemistry and molecular biology, methodologies, commercial strategies, and examples from numerous crops.