Biopolymer Methods in Tissue Engineering

Biopolymer Methods in Tissue Engineering PDF Author: Anthony P. Hollander
Publisher: Springer Science & Business Media
ISBN: 159259428X
Category : Technology & Engineering
Languages : en
Pages : 265

Book Description
There is an urgent need to develop new approaches to treat conditions as- ciated with the aging global population. The surgeon’s approach to many of these problems could be described as having evolved through three stages: Removal: Traditionally, diseased or badly damaged tissues and structures might simply be removed. This was appropriate for limbs and non-essential organs, but could not be applied to structures that were critical to sustain life. An additional problem was the creation of disability or physical deformity that in turn could lead to further complications. Replacement: In an effort to treat wider clinical problems, or to overcome the limitations of amputation, surgeons turned to the use of implanted materials and medical devices that could replace the functions of biological structures. This field developed rapidly in the 1960s and 1970s, with heart valve and total joint replacement becoming common. The term “biomaterial” was used increasingly to describe the materials used in these operations, and the study of biomaterials became one of the first truly interdisciplinary research fields. Today, biomaterials are employed in many millions of clinical procedures each year and they have become the mainstay of a very successful industry.

Biopolymer Methods in Tissue Engineering

Biopolymer Methods in Tissue Engineering PDF Author: Anthony P. Hollander
Publisher: Humana Press
ISBN: 9781617372803
Category : Technology & Engineering
Languages : en
Pages : 0

Book Description
There is an urgent need to develop new approaches to treat conditions as- ciated with the aging global population. The surgeon’s approach to many of these problems could be described as having evolved through three stages: Removal: Traditionally, diseased or badly damaged tissues and structures might simply be removed. This was appropriate for limbs and non-essential organs, but could not be applied to structures that were critical to sustain life. An additional problem was the creation of disability or physical deformity that in turn could lead to further complications. Replacement: In an effort to treat wider clinical problems, or to overcome the limitations of amputation, surgeons turned to the use of implanted materials and medical devices that could replace the functions of biological structures. This field developed rapidly in the 1960s and 1970s, with heart valve and total joint replacement becoming common. The term “biomaterial” was used increasingly to describe the materials used in these operations, and the study of biomaterials became one of the first truly interdisciplinary research fields. Today, biomaterials are employed in many millions of clinical procedures each year and they have become the mainstay of a very successful industry.

Tissue Engineering in Regenerative Medicine

Tissue Engineering in Regenerative Medicine PDF Author: Harold S. Bernstein
Publisher: Springer Science & Business Media
ISBN: 1617793221
Category : Science
Languages : en
Pages : 426

Book Description
Over the past decade, significant advances in the fields of stem cell biology, bioengineering, and animal models have converged on the discipline of regenerative medicine. Significant progress has been made leading from pre-clinical studies through phase 3 clinical trials for some therapies. This volume provides a state-of-the-art report on tissue engineering toward the goals of tissue and organ restoration and regeneration. Examples from different organ systems illustrate progress with growth factors to assist in tissue remodeling; the capacity of stem cells for restoring damaged tissues; novel synthetic biomaterials to facilitate cell therapy; transplantable tissue patches that preserve three-dimensional structure; synthetic organs generated in culture; aspects of the immune response to transplanted cells and materials; and suitable animal models for non-human clinical trials. The chapters of this book are organized into six sections: Stem Cells, Biomaterials and the Extracellular Environment, Engineered Tissue, Synthetic Organs, Immune Response, and Animal Models. Each section is intended to build upon information presented in the previous chapters, and set the stage for subsequent sections. Throughout the chapters, the reader will observe a common theme of basic discovery informing clinical translation, and clinical studies in animals and humans guiding subsequent experiments at the bench.

Porous Polymeric Bioresorbable Scaffolds for Tissue Engineering

Porous Polymeric Bioresorbable Scaffolds for Tissue Engineering PDF Author: Chiara Gualandi
Publisher: Springer Science & Business Media
ISBN: 3642192726
Category : Technology & Engineering
Languages : en
Pages : 124

Book Description
The development and application of bioactive nano-structured constructs for tissue regeneration is the focus of the research summarised in this thesis. Moreover, a particular focus is the rational use of supercritical carbon dioxide foaming and electrospinning technologies which can lead to innovative polymeric bioresorbable scaffolds made of hydrolysable (both commercial and ‘ad-hoc’ synthesized) polyesters. Mainly, the author discusses the manipulation of polymer chemical structure and composition to tune scaffold physical properties, and optimization of scaffold 3D architecture by a smart use of both fabrication techniques. The multidisciplinary nature of this research is imperative in pursuing the challenge of tissue regeneration successfully. One of the strengths of this thesis is the integration of knowledge from chemistry, physics, engineering, materials science and biomedical science which has contributed to setting up new national and international collaborations, while strengthening existing ones.

Unfolding the Biopolymer Landscape

Unfolding the Biopolymer Landscape PDF Author: Viness Pillay
Publisher: Bentham Science Publishers
ISBN: 1681081954
Category : Science
Languages : en
Pages : 469

Book Description
The need for the development of biomaterials as scaffold for tissue regeneration is driven by the increasing demands for materials that mimic functions of extracellular matrices of body tissues. Unfolding the Biopolymer Landscape provides a unique account of “biopolymeric interventions” inherent to biotechnological applications, soft tissue engineering, ophthalmic drug delivery, biotextiles, environmentally responsive systems, neurotherapeutics, and emulsions-based formulations for food and pharmaceutical applications. Chapters in this volume also cover biomedical applications and implications of cationic polymers, collagen-based substrates, multifunctional polymers, shape memory biopolymers, hybrid semisynthetic biomaterials, microbial exopolysaccharides, biomaterials mimicking the extracellular microenvironment, derivatized polysaccharides, and metallic biomaterials. Each chapter is distinctly written by experts in the respective fields and emphasis is given on the mechanistic profile of the performance of biopolymers and biomedical applications. This book provides both basic and advanced biopolymer information for scientific experts and early career researchers in the field of drug delivery, tissue engineering, nanomedicine, food technology, peptide science, biomaterial design, and nutrition. This volume provides a unique account of “biopolymeric interventions” inherent to biotechnological applications, soft tissue engineering, ophthalmic drug delivery, biotextiles, environmentally responsive systems, neurotherapeutics, and emulsions-based formulations for food and pharmaceutical applications.

Biopolymer Composites in Electronics

Biopolymer Composites in Electronics PDF Author: Kishor Kumar Sadasivuni
Publisher: Elsevier
ISBN: 0081009747
Category : Technology & Engineering
Languages : en
Pages : 544

Book Description
Biopolymer Composites in Electronics examines the current state-of-the-art in the electronic application based on biopolymer composites. Covering the synthesis, dispersion of fillers, characterization and fabrication of the composite materials, the book will help materials scientists and engineers address the challenges posed by the increased use of biopolymeric materials in electronic applications. The influence of preparation techniques on the generation of micro, meso, and nanoscale fillers, and the effect of filler size and dispersion on various biopolymers are discussed in detail. Applications covered include sensors, actuators, optics, fuel cells, photovoltaics, dielectrics, electromagnetic shielding, piezoelectrics, flexible displays, and microwave absorbers. In addition, characterization techniques are discussed and compared, enabling scientists and engineers to make the correct choice of technique. This book is a ‘one-stop’ reference for researchers, covering the entire state-of-the-art in biopolymer electronics. Written by a collection of expert worldwide contributors from industry, academia, government, and private research institutions, it is an outstanding reference for researchers in the field of biopolymer composites for advanced technologies. Enables researchers to keep up with the rapid development of biopolymer electronics, which offer light, flexible, and more cost-effective alternatives to conventional materials of solar cells, light-emitting diodes, and transistors Includes thorough coverage of the physics and chemistry behind biopolymer composites, helping readers to become rapidly acquainted with the fiel Provides in-depth information on the range of biopolymer applications in electronics, from printed flexible conductors and novel semiconductor components, to intelligent labels, large area displays, and solar panels

Bionanocomposites in Tissue Engineering and Regenerative Medicine

Bionanocomposites in Tissue Engineering and Regenerative Medicine PDF Author: Shakeel Ahmed
Publisher: Woodhead Publishing
ISBN: 0128216344
Category : Medical
Languages : en
Pages : 672

Book Description
Bionanocomposites in Tissue Engineering and Regenerative Medicine explores novel uses of these in tissue engineering and regenerative medicine. This book offers an interdisplinary approach, combining chemical, biomedical engineering, materials science and pharmacological aspects of the characterization, synthesis and application of bionanocomposites. Chapters cover a broad selection of bionanocomposites including chitosan, alginate and more, which are utilized in tissue engineering, wound healing, bone repair, drug formulation, cancer therapy, drug delivery, cartilage regeneration and dental implants. Additional sections of Bionanocomposites in Tissue Engineering and Regenerative Medicine discuss, in detail, the safety aspects and circular economy of bionanocomposites – offering an insight into the commercial and industrial aspects of these important materials. Bionanocomposites in Tissue Engineering and Regenerative Medicine will prove a highly useful text for for those in the fields of biomedical engineering, chemistry, pharmaceutics and materials science, both in academia and industrial R&D groups. Each bionanocomposite type is covered individually, providing specific and detailed information for each material Covers a range of tissue engineering and regenerative medicine applications, from dental and bone engineering to cancer therapy Offers an integrated approach, with contributions from authors across a variety of related disciplines, including biomedical engineering, chemistry and materials science

Tissue Engineering Using Ceramics and Polymers

Tissue Engineering Using Ceramics and Polymers PDF Author: Aldo R. Boccaccini
Publisher: Elsevier
ISBN: 0857097164
Category : Science
Languages : en
Pages : 728

Book Description
The second edition of Tissue Engineering Using Ceramics and Polymers comprehensively reviews the latest advances in this area rapidly evolving area of biomaterials science. Part one considers the biomaterials used for tissue engineering. It introduces the properties and processing of bioactive ceramics and glasses, as well as polymeric biomaterials, particularly biodegradable polymer phase nanocomposites. Part two reviews the advances in techniques for processing, characterization, and modeling of materials. The topics covered range from nanoscale design in biomineralization strategies for bone tissue engineering to microscopy techniques for characterizing cells to materials for perfusion bioreactors. Further, carrier systems and biosensors in biomedical applications are considered. Finally, part three looks at the specific types of tissue and organ regeneration, with chapters concerning kidney, bladder, peripheral nerve, small intestine, skeletal muscle, cartilage, liver, and myocardial tissue engineering. Important developments in collagen-based tubular constructs, bioceramic nanoparticles, and multifunctional scaffolds for tissue engineering and drug delivery are also explained. Tissue Engineering Using Ceramics and Polymers is a valuable reference tool for both academic researchers and scientists involved in biomaterials or tissue engineering, including the areas of bone and soft-tissue reconstruction and repair, and organ regeneration. Second edition comprehensively examines the latest advances in ceramic and polymers in tissue engineering Provides readers with general information on polymers and ceramics and looks at the processing, characterization, and modeling Reviews the latest research and advances in tissue and organ regeneration using ceramics and polymers

Materials for Biomedical Engineering: Biopolymer Fibers

Materials for Biomedical Engineering: Biopolymer Fibers PDF Author: Valentina Grumezescu
Publisher: Elsevier
ISBN: 0128168730
Category : Medical
Languages : en
Pages : 478

Book Description
Materials for Biomedical Engineering: Biopolymer Fibers discusses the use of biopolymer fibers in the development of biomedical applications. It provides a recent review of the main types of polymeric fibers and their impact in biomedicine and related fields. The development of different instruments, such as sensors, medical fibers, and textiles are discussed, along with how they greatly benefited by progress made in polymeric fibers. The book provides a comprehensive and updated reference on the latest research in the field of biopolymers and their composites in relation to medical applications. Provides a valuable resource of recent scientific progress, highlighting the application and use of polymeric fibers in biomedical engineering that can be used by researchers, engineers and academics Includes novel opportunities and ideas for developing or improving technologies in biopolymers by companies, biomedical industries, and other sectors Features at least 50% of references from the last 2-3 years

Biotechnology in Biopolymers

Biotechnology in Biopolymers PDF Author: Atul Tiwari
Publisher: Smithers Rapra
ISBN: 1847355447
Category : Science
Languages : en
Pages : 518

Book Description
This comprehensive book provides up-to-date information on the developments in the field of biopolymers. Close attention has been paid to include all the important aspects that are necessary to understand the field. The book introduces the reader with the progress in the field, followed by outlining its applications in different areas. Different methods and techniques of synthesis and characterization are detailed as individual chapters. Various mode and mechanism of degradation of materials will be discussed. There is a dedicated chapter on industrially available biopolymers and their applications and well as a chapter detailing the ongoing research, current trends and future challenges. Unlike other books, this book consists of information that is useful for students who are interested in biotech and polymer research. Each chapter will explain the science and technology from the inception to advance state of the art available to date. This book will also be useful for the researcher involved in the high-tech research as it will provide them the up-to-date information available in this field.