Computational Many-Particle Physics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Computational Many-Particle Physics PDF full book. Access full book title Computational Many-Particle Physics by Holger Fehske. Download full books in PDF and EPUB format.

Computational Many-Particle Physics

Computational Many-Particle Physics PDF Author: Holger Fehske
Publisher: Springer
ISBN: 3540746862
Category : Science
Languages : en
Pages : 780

Book Description
Looking for the real state of play in computational many-particle physics? Look no further. This book presents an overview of state-of-the-art numerical methods for studying interacting classical and quantum many-particle systems. A broad range of techniques and algorithms are covered, and emphasis is placed on their implementation on modern high-performance computers. This excellent book comes complete with online files and updates allowing readers to stay right up to date.

Computational Many-Particle Physics

Computational Many-Particle Physics PDF Author: Holger Fehske
Publisher: Springer
ISBN: 3540746862
Category : Science
Languages : en
Pages : 780

Book Description
Looking for the real state of play in computational many-particle physics? Look no further. This book presents an overview of state-of-the-art numerical methods for studying interacting classical and quantum many-particle systems. A broad range of techniques and algorithms are covered, and emphasis is placed on their implementation on modern high-performance computers. This excellent book comes complete with online files and updates allowing readers to stay right up to date.

Computational Many-Particle Physics

Computational Many-Particle Physics PDF Author: Holger Fehske
Publisher: Springer Science & Business Media
ISBN: 3540746854
Category : Science
Languages : en
Pages : 774

Book Description
Looking for the real state of play in computational many-particle physics? Look no further. This book presents an overview of state-of-the-art numerical methods for studying interacting classical and quantum many-particle systems. A broad range of techniques and algorithms are covered, and emphasis is placed on their implementation on modern high-performance computers. This excellent book comes complete with online files and updates allowing readers to stay right up to date.

Computational Many-Particle Physics

Computational Many-Particle Physics PDF Author: Holger Fehske
Publisher: Springer
ISBN: 9783540843290
Category : Science
Languages : en
Pages : 780

Book Description
Looking for the real state of play in computational many-particle physics? Look no further. This book presents an overview of state-of-the-art numerical methods for studying interacting classical and quantum many-particle systems. A broad range of techniques and algorithms are covered, and emphasis is placed on their implementation on modern high-performance computers. This excellent book comes complete with online files and updates allowing readers to stay right up to date.

Many-Particle Physics

Many-Particle Physics PDF Author: Gerald D. Mahan
Publisher: Springer Science & Business Media
ISBN: 1461314690
Category : Science
Languages : en
Pages : 1042

Book Description
This textbook is for a course in advanced solid-state theory. It is aimed at graduate students in their third or fourth year of study who wish to learn the advanced techniques of solid-state theoretical physics. The method of Green's functions is introduced at the beginning and used throughout. Indeed, it could be considered a book on practical applications of Green's functions, although I prefer to call it a book on physics. The method of Green's functions has been used by many theorists to derive equations which, when solved, provide an accurate numerical description of many processes in solids and quantum fluids. In this book I attempt to summarize many of these theories in order to show how Green's functions are used to solve real problems. My goal, in writing each section, is to describe calculations which can be compared with experiments and to provide these comparisons whenever available. The student is expected to have a background in quantum mechanics at the level acquired from a graduate course using the textbook by either L. I. Schiff, A. S. Davydov, or I. Landau and E. M. Lifshiftz. Similarly, a prior course in solid-state physics is expected, since the reader is assumed to know concepts such as Brillouin zones and energy band theory. Each chapter has problems which are an important part of the lesson; the problems often provide physical insights which are not in the text. Sometimes the answers to the problems are provided, but usually not.

An Advanced Course in Computational Nuclear Physics

An Advanced Course in Computational Nuclear Physics PDF Author: Morten Hjorth-Jensen
Publisher: Springer
ISBN: 3319533363
Category : Science
Languages : en
Pages : 644

Book Description
This graduate-level text collects and synthesizes a series of ten lectures on the nuclear quantum many-body problem. Starting from our current understanding of the underlying forces, it presents recent advances within the field of lattice quantum chromodynamics before going on to discuss effective field theories, central many-body methods like Monte Carlo methods, coupled cluster theories, the similarity renormalization group approach, Green’s function methods and large-scale diagonalization approaches. Algorithmic and computational advances show particular promise for breakthroughs in predictive power, including proper error estimates, a better understanding of the underlying effective degrees of freedom and of the respective forces at play. Enabled by recent improvements in theoretical, experimental and numerical techniques, the state-of-the art applications considered in this volume span the entire range, from our smallest components – quarks and gluons as the mediators of the strong force – to the computation of the equation of state for neutron star matter. The lectures presented provide an in-depth exposition of the underlying theoretical and algorithmic approaches as well details of the numerical implementation of the methods discussed. Several also include links to numerical software and benchmark calculations, which readers can use to develop their own programs for tackling challenging nuclear many-body problems.

Modern Theories of Many-Particle Systems in Condensed Matter Physics

Modern Theories of Many-Particle Systems in Condensed Matter Physics PDF Author: Daniel C. Cabra
Publisher: Springer Science & Business Media
ISBN: 3642104487
Category : Technology & Engineering
Languages : en
Pages : 380

Book Description
Condensed matter systems where interactions are strong are inherently difficult to analyze theoretically. The situation is particularly interesting in low-dimensional systems, where quantum fluctuations play a crucial role. Here, the development of non-perturbative methods and the study of integrable field theory have facilitated the understanding of the behavior of many quasi one- and two-dimensional strongly correlated systems. In view of the same rapid development that has taken place for both experimental and numerical techniques, as well as the emergence of novel testing-grounds such as cold atoms or graphene, the current understanding of strongly correlated condensed matter systems differs quite considerably from standard textbook presentations. The present volume of lecture notes aims to fill this gap in the literature by providing a collection of authoritative tutorial reviews, covering such topics as quantum phase transitions of antiferromagnets and cuprate-based high-temperature superconductors, electronic liquid crystal phases, graphene physics, dynamical mean field theory applied to strongly correlated systems, transport through quantum dots, quantum information perspectives on many-body physics, frustrated magnetism, statistical mechanics of classical and quantum computational complexity, and integrable methods in statistical field theory. As both graduate-level text and authoritative reference on this topic, this book will benefit newcomers and more experienced researchers in this field alike.

Applied Computational Physics

Applied Computational Physics PDF Author: Joseph F. Boudreau
Publisher: Oxford University Press
ISBN: 0198708637
Category : Science
Languages : en
Pages : 936

Book Description
A textbook that addresses a wide variety of problems in classical and quantum physics. Modern programming techniques are stressed throughout, along with the important topics of encapsulation, polymorphism, and object-oriented design. Scientific problems are physically motivated, solution strategies are developed, and explicit code is presented.

Modern Physics with Modern Computational Methods

Modern Physics with Modern Computational Methods PDF Author: John Morrison
Publisher: Academic Press
ISBN: 0128177918
Category : Education
Languages : en
Pages : 500

Book Description
Modern Physics with Modern Computational Methods, Third Edition presents the ideas that have shaped modern physics and provides an introduction to current research in the different fields of physics. Intended as the text for a first course in modern physics following an introductory course in physics with calculus, the book begins with a brief and focused account of experiments that led to the formulation of the new quantum theory, while ensuing chapters go more deeply into the underlying physics. In this new edition, the differential equations that arise are converted into sets of linear equation or matrix equations by making a finite difference approximation of the derivatives or by using the spline collocation method. MATLAB programs are described for solving the eigenvalue equations for a particle in a finite well and the simple harmonic oscillator and for solving the radial equation for hydrogen. The lowest-lying solutions of these problems are plotted using MATLAB and the physical significance of these solutions are discussed. Each of the later chapters conclude with a description of modern developments. Makes critical topics accessible by illustrating them with simple examples and figures Presents modern quantum mechanical concepts systematically and applies them consistently throughout the book Utilizes modern computational methods with MATLAB programs to solve the equations that arise in physics, and describes the programs and solutions in detail Covers foundational topics, including transition probabilities, crystal structure, reciprocal lattices, and Bloch theorem to build understanding of applications, such as lasers and semiconductor devices Features expanded exercises and problems at the end of each chapter as well as multiple appendices for quick reference

Introduction to Computational Methods in Many Body Physics

Introduction to Computational Methods in Many Body Physics PDF Author: Michael Bonitz
Publisher:
ISBN:
Category : Many-body problem
Languages : en
Pages : 424

Book Description
This book is a multi-purpose and user-friendly textbook covering both fundamentals (in thermodynamics and statistical mechanics) and numerous applications. The emphasis is on simple derivations of simple results which can be compared with experimental data. The first half of the book covers basic thermodynamics, statistical ensembles, Boltzmann and quantum statistics; and the second half covers magnetism, electrostatic interactions (solutions and plasmas), non-equilibrium statistical mechanics, polymers, superfluidity, renormalization theory, and other specialized topics. This book, while serving well as a reference book for research scientists, is especially suitable as a textbook for a one-year statistical mechanics course for undergraduate students in physics, chemistry, engineering, biology, and material sciences. Alternatively, the first 5 chapters of the book can be used as the textbook for an undergraduate one-semester combined thermodynamics/statistical mechanics course (or statistical thermodynamics).

Quantum Monte Carlo Methods

Quantum Monte Carlo Methods PDF Author: James Gubernatis
Publisher: Cambridge University Press
ISBN: 1316483126
Category : Science
Languages : en
Pages : 503

Book Description
Featuring detailed explanations of the major algorithms used in quantum Monte Carlo simulations, this is the first textbook of its kind to provide a pedagogical overview of the field and its applications. The book provides a comprehensive introduction to the Monte Carlo method, its use, and its foundations, and examines algorithms for the simulation of quantum many-body lattice problems at finite and zero temperature. These algorithms include continuous-time loop and cluster algorithms for quantum spins, determinant methods for simulating fermions, power methods for computing ground and excited states, and the variational Monte Carlo method. Also discussed are continuous-time algorithms for quantum impurity models and their use within dynamical mean-field theory, along with algorithms for analytically continuing imaginary-time quantum Monte Carlo data. The parallelization of Monte Carlo simulations is also addressed. This is an essential resource for graduate students, teachers, and researchers interested in quantum Monte Carlo techniques.