Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics PDF full book. Access full book title Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics by Victor A. Galaktionov. Download full books in PDF and EPUB format.

Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics

Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics PDF Author: Victor A. Galaktionov
Publisher: CRC Press
ISBN: 9781584886631
Category : Mathematics
Languages : en
Pages : 538

Book Description
Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics is the first book to provide a systematic construction of exact solutions via linear invariant subspaces for nonlinear differential operators. Acting as a guide to nonlinear evolution equations and models from physics and mechanics, the book focuses on the existence of new exact solutions on linear invariant subspaces for nonlinear operators and their crucial new properties. This practical reference deals with various partial differential equations (PDEs) and models that exhibit some common nonlinear invariant features. It begins with classical as well as more recent examples of solutions on invariant subspaces. In the remainder of the book, the authors develop several techniques for constructing exact solutions of various nonlinear PDEs, including reaction-diffusion and gas dynamics models, thin-film and Kuramoto-Sivashinsky equations, nonlinear dispersion (compacton) equations, KdV-type and Harry Dym models, quasilinear magma equations, and Green-Naghdi equations. Using exact solutions, they describe the evolution properties of blow-up or extinction phenomena, finite interface propagation, and the oscillatory, changing sign behavior of weak solutions near interfaces for nonlinear PDEs of various types and orders. The techniques surveyed in Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics serve as a preliminary introduction to the general theory of nonlinear evolution PDEs of different orders and types.

Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics

Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics PDF Author: Victor A. Galaktionov
Publisher: CRC Press
ISBN: 9781584886631
Category : Mathematics
Languages : en
Pages : 538

Book Description
Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics is the first book to provide a systematic construction of exact solutions via linear invariant subspaces for nonlinear differential operators. Acting as a guide to nonlinear evolution equations and models from physics and mechanics, the book focuses on the existence of new exact solutions on linear invariant subspaces for nonlinear operators and their crucial new properties. This practical reference deals with various partial differential equations (PDEs) and models that exhibit some common nonlinear invariant features. It begins with classical as well as more recent examples of solutions on invariant subspaces. In the remainder of the book, the authors develop several techniques for constructing exact solutions of various nonlinear PDEs, including reaction-diffusion and gas dynamics models, thin-film and Kuramoto-Sivashinsky equations, nonlinear dispersion (compacton) equations, KdV-type and Harry Dym models, quasilinear magma equations, and Green-Naghdi equations. Using exact solutions, they describe the evolution properties of blow-up or extinction phenomena, finite interface propagation, and the oscillatory, changing sign behavior of weak solutions near interfaces for nonlinear PDEs of various types and orders. The techniques surveyed in Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics serve as a preliminary introduction to the general theory of nonlinear evolution PDEs of different orders and types.

Separation of Variables and Exact Solutions to Nonlinear PDEs

Separation of Variables and Exact Solutions to Nonlinear PDEs PDF Author: Andrei D. Polyanin
Publisher: CRC Press
ISBN: 100046363X
Category : Mathematics
Languages : en
Pages : 402

Book Description
Separation of Variables and Exact Solutions to Nonlinear PDEs is devoted to describing and applying methods of generalized and functional separation of variables used to find exact solutions of nonlinear partial differential equations (PDEs). It also presents the direct method of symmetry reductions and its more general version. In addition, the authors describe the differential constraint method, which generalizes many other exact methods. The presentation involves numerous examples of utilizing the methods to find exact solutions to specific nonlinear equations of mathematical physics. The equations of heat and mass transfer, wave theory, hydrodynamics, nonlinear optics, combustion theory, chemical technology, biology, and other disciplines are studied. Particular attention is paid to nonlinear equations of a reasonably general form that depend on one or several arbitrary functions. Such equations are the most difficult to analyze. Their exact solutions are of significant practical interest, as they are suitable to assess the accuracy of various approximate analytical and numerical methods. The book contains new material previously unpublished in monographs. It is intended for a broad audience of scientists, engineers, instructors, and students specializing in applied and computational mathematics, theoretical physics, mechanics, control theory, chemical engineering science, and other disciplines. Individual sections of the book and examples are suitable for lecture courses on partial differential equations, equations of mathematical physics, and methods of mathematical physics, for delivering special courses and for practical training.

Handbook of Nonlinear Partial Differential Equations, Second Edition

Handbook of Nonlinear Partial Differential Equations, Second Edition PDF Author: Andrei D. Polyanin
Publisher: CRC Press
ISBN: 142008724X
Category : Mathematics
Languages : en
Pages : 1878

Book Description
New to the Second Edition More than 1,000 pages with over 1,500 new first-, second-, third-, fourth-, and higher-order nonlinear equations with solutions Parabolic, hyperbolic, elliptic, and other systems of equations with solutions Some exact methods and transformations Symbolic and numerical methods for solving nonlinear PDEs with MapleTM, Mathematica®, and MATLAB® Many new illustrative examples and tables A large list of references consisting of over 1,300 sources To accommodate different mathematical backgrounds, the authors avoid wherever possible the use of special terminology. They outline the methods in a schematic, simplified manner and arrange the material in increasing order of complexity.

Blow-up for Higher-Order Parabolic, Hyperbolic, Dispersion and Schrodinger Equations

Blow-up for Higher-Order Parabolic, Hyperbolic, Dispersion and Schrodinger Equations PDF Author: Victor A. Galaktionov
Publisher: CRC Press
ISBN: 1482251736
Category : Mathematics
Languages : en
Pages : 569

Book Description
Blow-up for Higher-Order Parabolic, Hyperbolic, Dispersion and Schrödinger Equations shows how four types of higher-order nonlinear evolution partial differential equations (PDEs) have many commonalities through their special quasilinear degenerate representations. The authors present a unified approach to deal with these quasilinear PDEs. The book first studies the particular self-similar singularity solutions (patterns) of the equations. This approach allows four different classes of nonlinear PDEs to be treated simultaneously to establish their striking common features. The book describes many properties of the equations and examines traditional questions of existence/nonexistence, uniqueness/nonuniqueness, global asymptotics, regularizations, shock-wave theory, and various blow-up singularities. Preparing readers for more advanced mathematical PDE analysis, the book demonstrates that quasilinear degenerate higher-order PDEs, even exotic and awkward ones, are not as daunting as they first appear. It also illustrates the deep features shared by several types of nonlinear PDEs and encourages readers to develop further this unifying PDE approach from other viewpoints.

Lie and non-Lie Symmetries: Theory and Applications for Solving Nonlinear Models

Lie and non-Lie Symmetries: Theory and Applications for Solving Nonlinear Models PDF Author: Roman M. Cherniha
Publisher: MDPI
ISBN: 3038425265
Category : Electronic book
Languages : en
Pages : 427

Book Description
This book is a printed edition of the Special Issue "Lie Theory and Its Applications" that was published in Symmetry

Separation of Variables and Exact Solutions to Nonlinear PDEs

Separation of Variables and Exact Solutions to Nonlinear PDEs PDF Author: Andrei D. Polyanin
Publisher: CRC Press
ISBN: 1000463664
Category : Mathematics
Languages : en
Pages : 349

Book Description
Separation of Variables and Exact Solutions to Nonlinear PDEs is devoted to describing and applying methods of generalized and functional separation of variables used to find exact solutions of nonlinear partial differential equations (PDEs). It also presents the direct method of symmetry reductions and its more general version. In addition, the authors describe the differential constraint method, which generalizes many other exact methods. The presentation involves numerous examples of utilizing the methods to find exact solutions to specific nonlinear equations of mathematical physics. The equations of heat and mass transfer, wave theory, hydrodynamics, nonlinear optics, combustion theory, chemical technology, biology, and other disciplines are studied. Particular attention is paid to nonlinear equations of a reasonably general form that depend on one or several arbitrary functions. Such equations are the most difficult to analyze. Their exact solutions are of significant practical interest, as they are suitable to assess the accuracy of various approximate analytical and numerical methods. The book contains new material previously unpublished in monographs. It is intended for a broad audience of scientists, engineers, instructors, and students specializing in applied and computational mathematics, theoretical physics, mechanics, control theory, chemical engineering science, and other disciplines. Individual sections of the book and examples are suitable for lecture courses on partial differential equations, equations of mathematical physics, and methods of mathematical physics, for delivering special courses and for practical training.

Algebraic Approaches to Partial Differential Equations

Algebraic Approaches to Partial Differential Equations PDF Author: Xiaoping Xu
Publisher: Springer Science & Business Media
ISBN: 3642368743
Category : Mathematics
Languages : en
Pages : 394

Book Description
This book presents the various algebraic techniques for solving partial differential equations to yield exact solutions, techniques developed by the author in recent years and with emphasis on physical equations such as: the Maxwell equations, the Dirac equations, the KdV equation, the KP equation, the nonlinear Schrodinger equation, the Davey and Stewartson equations, the Boussinesq equations in geophysics, the Navier-Stokes equations and the boundary layer problems. In order to solve them, I have employed the grading technique, matrix differential operators, stable-range of nonlinear terms, moving frames, asymmetric assumptions, symmetry transformations, linearization techniques and special functions. The book is self-contained and requires only a minimal understanding of calculus and linear algebra, making it accessible to a broad audience in the fields of mathematics, the sciences and engineering. Readers may find the exact solutions and mathematical skills needed in their own research.

Advanced Computing in Industrial Mathematics

Advanced Computing in Industrial Mathematics PDF Author: Krassimir Georgiev
Publisher: Springer
ISBN: 3319972774
Category : Technology & Engineering
Languages : en
Pages : 446

Book Description
This book gathers the peer-reviewed proceedings of the 12th Annual Meeting of the Bulgarian Section of the Society for Industrial and Applied Mathematics, BGSIAM’17, held in Sofia, Bulgaria, in December 2017. The general theme of BGSIAM’17 was industrial and applied mathematics, with a particular focus on: high-performance computing, numerical methods and algorithms, analysis of partial differential equations and their applications, mathematical biology, control and uncertain systems, stochastic models, molecular dynamics, neural networks, genetic algorithms, metaheuristics for optimization problems, generalized nets, and Big Data.

Computer Algebra in Scientific Computing

Computer Algebra in Scientific Computing PDF Author: Matthew England
Publisher: Springer
ISBN: 3030268314
Category : Computers
Languages : en
Pages : 479

Book Description
This book constitutes the refereed proceedings of the 21st International Workshop on Computer Algebra in Scientific Computing, CASC 2019, held in Moscow, Russia, in August 2019. The 28 full papers presented together with 2 invited talks were carefully reviewed and selected from 44 submissions. They deal with cutting-edge research in all major disciplines of computer algebra. The papers cover topics such as polynomial algebra, symbolic and symbolic-numerical computation, applications of symbolic computation for investigating and solving ordinary differential equations, applications of CASs in the investigation and solution of celestial mechanics problems, and in mechanics, physics, and robotics.

Fractional Differential Equations

Fractional Differential Equations PDF Author: Angelamaria Cardone
Publisher: Springer Nature
ISBN: 981197716X
Category : Mathematics
Languages : en
Pages : 152

Book Description
The content of the book collects some contributions related to the talks presented during the INdAM Workshop "Fractional Differential Equations: Modelling, Discretization, and Numerical Solvers", held in Rome, Italy, on July 12–14, 2021. All contributions are original and not published elsewhere. The main topic of the book is fractional calculus, a topic that addresses the study and application of integrals and derivatives of noninteger order. These operators, unlike the classic operators of integer order, are nonlocal operators and are better suited to describe phenomena with memory (with respect to time and/or space). Although the basic ideas of fractional calculus go back over three centuries, only in recent decades there has been a rapid increase in interest in this field of research due not only to the increasing use of fractional calculus in applications in biology, physics, engineering, probability, etc., but also thanks to the availability of new and more powerful numerical tools that allow for an efficient solution of problems that until a few years ago appeared unsolvable. The analytical solution of fractional differential equations (FDEs) appears even more difficult than in the integer case. Hence, numerical analysis plays a decisive role since practically every type of application of fractional calculus requires adequate numerical tools. The aim of this book is therefore to collect and spread ideas mainly coming from the two communities of numerical analysts operating in this field - the one working on methods for the solution of differential problems and the one working on the numerical linear algebra side - to share knowledge and create synergies. At the same time, the book intends to realize a direct bridge between researchers working on applications and numerical analysts. Indeed, the book collects papers on applications, numerical methods for differential problems of fractional order, and related aspects in numerical linear algebra. The target audience of the book is scholars interested in recent advancements in fractional calculus.