Introduction to Unconstrained Optimization with R PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Introduction to Unconstrained Optimization with R PDF full book. Access full book title Introduction to Unconstrained Optimization with R by Shashi Kant Mishra. Download full books in PDF and EPUB format.

Introduction to Unconstrained Optimization with R

Introduction to Unconstrained Optimization with R PDF Author: Shashi Kant Mishra
Publisher: Springer Nature
ISBN: 9811508941
Category : Mathematics
Languages : en
Pages : 309

Book Description
This book discusses unconstrained optimization with R—a free, open-source computing environment, which works on several platforms, including Windows, Linux, and macOS. The book highlights methods such as the steepest descent method, Newton method, conjugate direction method, conjugate gradient methods, quasi-Newton methods, rank one correction formula, DFP method, BFGS method and their algorithms, convergence analysis, and proofs. Each method is accompanied by worked examples and R scripts. To help readers apply these methods in real-world situations, the book features a set of exercises at the end of each chapter. Primarily intended for graduate students of applied mathematics, operations research and statistics, it is also useful for students of mathematics, engineering, management, economics, and agriculture.

Introduction to Unconstrained Optimization with R

Introduction to Unconstrained Optimization with R PDF Author: Shashi Kant Mishra
Publisher: Springer Nature
ISBN: 9811508941
Category : Mathematics
Languages : en
Pages : 309

Book Description
This book discusses unconstrained optimization with R—a free, open-source computing environment, which works on several platforms, including Windows, Linux, and macOS. The book highlights methods such as the steepest descent method, Newton method, conjugate direction method, conjugate gradient methods, quasi-Newton methods, rank one correction formula, DFP method, BFGS method and their algorithms, convergence analysis, and proofs. Each method is accompanied by worked examples and R scripts. To help readers apply these methods in real-world situations, the book features a set of exercises at the end of each chapter. Primarily intended for graduate students of applied mathematics, operations research and statistics, it is also useful for students of mathematics, engineering, management, economics, and agriculture.

Numerical Methods for Unconstrained Optimization and Nonlinear Equations

Numerical Methods for Unconstrained Optimization and Nonlinear Equations PDF Author: J. E. Dennis, Jr.
Publisher: SIAM
ISBN: 9781611971200
Category : Mathematics
Languages : en
Pages : 394

Book Description
This book has become the standard for a complete, state-of-the-art description of the methods for unconstrained optimization and systems of nonlinear equations. Originally published in 1983, it provides information needed to understand both the theory and the practice of these methods and provides pseudocode for the problems. The algorithms covered are all based on Newton's method or "quasi-Newton" methods, and the heart of the book is the material on computational methods for multidimensional unconstrained optimization and nonlinear equation problems. The republication of this book by SIAM is driven by a continuing demand for specific and sound advice on how to solve real problems. The level of presentation is consistent throughout, with a good mix of examples and theory, making it a valuable text at both the graduate and undergraduate level. It has been praised as excellent for courses with approximately the same name as the book title and would also be useful as a supplemental text for a nonlinear programming or a numerical analysis course. Many exercises are provided to illustrate and develop the ideas in the text. A large appendix provides a mechanism for class projects and a reference for readers who want the details of the algorithms. Practitioners may use this book for self-study and reference. For complete understanding, readers should have a background in calculus and linear algebra. The book does contain background material in multivariable calculus and numerical linear algebra.

Practical Methods of Optimization

Practical Methods of Optimization PDF Author: R. Fletcher
Publisher: John Wiley & Sons
ISBN: 111872318X
Category : Mathematics
Languages : en
Pages : 470

Book Description
Fully describes optimization methods that are currently most valuable in solving real-life problems. Since optimization has applications in almost every branch of science and technology, the text emphasizes their practical aspects in conjunction with the heuristics useful in making them perform more reliably and efficiently. To this end, it presents comparative numerical studies to give readers a feel for possibile applications and to illustrate the problems in assessing evidence. Also provides theoretical background which provides insights into how methods are derived. This edition offers revised coverage of basic theory and standard techniques, with updated discussions of line search methods, Newton and quasi-Newton methods, and conjugate direction methods, as well as a comprehensive treatment of restricted step or trust region methods not commonly found in the literature. Also includes recent developments in hybrid methods for nonlinear least squares; an extended discussion of linear programming, with new methods for stable updating of LU factors; and a completely new section on network programming. Chapters include computer subroutines, worked examples, and study questions.

Unconstrained Optimization and Quantum Calculus

Unconstrained Optimization and Quantum Calculus PDF Author: Bhagwat Ram
Publisher: Springer Nature
ISBN: 981972435X
Category :
Languages : en
Pages : 150

Book Description


An Introduction to Optimization

An Introduction to Optimization PDF Author: Edwin K. P. Chong
Publisher: John Wiley & Sons
ISBN: 0471654000
Category : Mathematics
Languages : en
Pages : 497

Book Description
A modern, up-to-date introduction to optimization theory and methods This authoritative book serves as an introductory text to optimization at the senior undergraduate and beginning graduate levels. With consistently accessible and elementary treatment of all topics, An Introduction to Optimization, Second Edition helps students build a solid working knowledge of the field, including unconstrained optimization, linear programming, and constrained optimization. Supplemented with more than one hundred tables and illustrations, an extensive bibliography, and numerous worked examples to illustrate both theory and algorithms, this book also provides: * A review of the required mathematical background material * A mathematical discussion at a level accessible to MBA and business students * A treatment of both linear and nonlinear programming * An introduction to recent developments, including neural networks, genetic algorithms, and interior-point methods * A chapter on the use of descent algorithms for the training of feedforward neural networks * Exercise problems after every chapter, many new to this edition * MATLAB(r) exercises and examples * Accompanying Instructor's Solutions Manual available on request An Introduction to Optimization, Second Edition helps students prepare for the advanced topics and technological developments that lie ahead. It is also a useful book for researchers and professionals in mathematics, electrical engineering, economics, statistics, and business. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.

Bayesian Approaches in Oncology Using R and OpenBUGS

Bayesian Approaches in Oncology Using R and OpenBUGS PDF Author: Atanu Bhattacharjee
Publisher: CRC Press
ISBN: 1000330060
Category : Mathematics
Languages : en
Pages : 188

Book Description
Bayesian Approaches in Oncology Using R and OpenBUGS serves two audiences: those who are familiar with the theory and applications of bayesian approach and wish to learn or enhance their skills in R and OpenBUGS, and those who are enrolled in R and OpenBUGS-based course for bayesian approach implementation. For those who have never used R/OpenBUGS, the book begins with a self-contained introduction to R that lays the foundation for later chapters. Many books on the bayesian approach and the statistical analysis are advanced, and many are theoretical. While most of them do cover the objective, the fact remains that data analysis can not be performed without actually doing it, and this means using dedicated statistical software. There are several software packages, all with their specific objective. Finally, all packages are free to use, are versatile with problem-solving, and are interactive with R and OpenBUGS. This book continues to cover a range of techniques related to oncology that grow in statistical analysis. It intended to make a single source of information on Bayesian statistical methodology for oncology research to cover several dimensions of statistical analysis. The book explains data analysis using real examples and includes all the R and OpenBUGS codes necessary to reproduce the analyses. The idea is to overall extending the Bayesian approach in oncology practice. It presents four sections to the statistical application framework: Bayesian in Clinical Research and Sample Size Calcuation Bayesian in Time-to-Event Data Analysis Bayesian in Longitudinal Data Analysis Bayesian in Diagnostics Test Statistics This book is intended as a first course in bayesian biostatistics for oncology students. An oncologist can find useful guidance for implementing bayesian in research work. It serves as a practical guide and an excellent resource for learning the theory and practice of bayesian methods for the applied statistician, biostatistician, and data scientist.

Nonlinear Conjugate Gradient Methods for Unconstrained Optimization

Nonlinear Conjugate Gradient Methods for Unconstrained Optimization PDF Author: Neculai Andrei
Publisher: Springer Nature
ISBN: 3030429504
Category : Mathematics
Languages : en
Pages : 515

Book Description
Two approaches are known for solving large-scale unconstrained optimization problems—the limited-memory quasi-Newton method (truncated Newton method) and the conjugate gradient method. This is the first book to detail conjugate gradient methods, showing their properties and convergence characteristics as well as their performance in solving large-scale unconstrained optimization problems and applications. Comparisons to the limited-memory and truncated Newton methods are also discussed. Topics studied in detail include: linear conjugate gradient methods, standard conjugate gradient methods, acceleration of conjugate gradient methods, hybrid, modifications of the standard scheme, memoryless BFGS preconditioned, and three-term. Other conjugate gradient methods with clustering the eigenvalues or with the minimization of the condition number of the iteration matrix, are also treated. For each method, the convergence analysis, the computational performances and the comparisons versus other conjugate gradient methods are given. The theory behind the conjugate gradient algorithms presented as a methodology is developed with a clear, rigorous, and friendly exposition; the reader will gain an understanding of their properties and their convergence and will learn to develop and prove the convergence of his/her own methods. Numerous numerical studies are supplied with comparisons and comments on the behavior of conjugate gradient algorithms for solving a collection of 800 unconstrained optimization problems of different structures and complexities with the number of variables in the range [1000,10000]. The book is addressed to all those interested in developing and using new advanced techniques for solving unconstrained optimization complex problems. Mathematical programming researchers, theoreticians and practitioners in operations research, practitioners in engineering and industry researchers, as well as graduate students in mathematics, Ph.D. and master students in mathematical programming, will find plenty of information and practical applications for solving large-scale unconstrained optimization problems and applications by conjugate gradient methods.

Introduction to Mathematics for Economics with R

Introduction to Mathematics for Economics with R PDF Author: Massimiliano Porto
Publisher: Springer Nature
ISBN: 3031052021
Category : Business & Economics
Languages : en
Pages : 866

Book Description
This book provides a practical introduction to mathematics for economics using R software. Using R as a basis, this book guides the reader through foundational topics in linear algebra, calculus, and optimization. The book is organized in order of increasing difficulty, beginning with a rudimentary introduction to R and progressing through exercises that require the reader to code their own functions in R. All chapters include applications for topics in economics and econometrics. As fully reproducible book, this volume gives readers the opportunity to learn by doing and develop research skills as they go. As such, it is appropriate for students in economics and econometrics.

An Introduction to Optimization

An Introduction to Optimization PDF Author: Edwin K. P. Chong
Publisher: John Wiley & Sons
ISBN: 1118515153
Category : Mathematics
Languages : en
Pages : 646

Book Description
Praise for the Third Edition ". . . guides and leads the reader through the learning path . . . [e]xamples are stated very clearly and the results are presented with attention to detail." —MAA Reviews Fully updated to reflect new developments in the field, the Fourth Edition of Introduction to Optimization fills the need for accessible treatment of optimization theory and methods with an emphasis on engineering design. Basic definitions and notations are provided in addition to the related fundamental background for linear algebra, geometry, and calculus. This new edition explores the essential topics of unconstrained optimization problems, linear programming problems, and nonlinear constrained optimization. The authors also present an optimization perspective on global search methods and include discussions on genetic algorithms, particle swarm optimization, and the simulated annealing algorithm. Featuring an elementary introduction to artificial neural networks, convex optimization, and multi-objective optimization, the Fourth Edition also offers: A new chapter on integer programming Expanded coverage of one-dimensional methods Updated and expanded sections on linear matrix inequalities Numerous new exercises at the end of each chapter MATLAB exercises and drill problems to reinforce the discussed theory and algorithms Numerous diagrams and figures that complement the written presentation of key concepts MATLAB M-files for implementation of the discussed theory and algorithms (available via the book's website) Introduction to Optimization, Fourth Edition is an ideal textbook for courses on optimization theory and methods. In addition, the book is a useful reference for professionals in mathematics, operations research, electrical engineering, economics, statistics, and business.

Algorithms for Continuous Optimization

Algorithms for Continuous Optimization PDF Author: E. Spedicato
Publisher: Springer Science & Business Media
ISBN: 9400903693
Category : Mathematics
Languages : en
Pages : 572

Book Description
The NATO Advanced Study Institute on "Algorithms for continuous optimiza tion: the state of the art" was held September 5-18, 1993, at II Ciocco, Barga, Italy. It was attended by 75 students (among them many well known specialists in optimiza tion) from the following countries: Belgium, Brasil, Canada, China, Czech Republic, France, Germany, Greece, Hungary, Italy, Poland, Portugal, Rumania, Spain, Turkey, UK, USA, Venezuela. The lectures were given by 17 well known specialists in the field, from Brasil, China, Germany, Italy, Portugal, Russia, Sweden, UK, USA. Solving continuous optimization problems is a fundamental task in computational mathematics for applications in areas of engineering, economics, chemistry, biology and so on. Most real problems are nonlinear and can be of quite large size. Devel oping efficient algorithms for continuous optimization has been an important field of research in the last 30 years, with much additional impetus provided in the last decade by the availability of very fast and parallel computers. Techniques, like the simplex method, that were already considered fully developed thirty years ago have been thoroughly revised and enormously improved. The aim of this ASI was to present the state of the art in this field. While not all important aspects could be covered in the fifty hours of lectures (for instance multiob jective optimization had to be skipped), we believe that most important topics were presented, many of them by scientists who greatly contributed to their development.