Model Predictive Vibration Control PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Model Predictive Vibration Control PDF full book. Access full book title Model Predictive Vibration Control by Gergely Takács. Download full books in PDF and EPUB format.

Model Predictive Vibration Control

Model Predictive Vibration Control PDF Author: Gergely Takács
Publisher: Springer Science & Business Media
ISBN: 1447123336
Category : Technology & Engineering
Languages : en
Pages : 518

Book Description
Real-time model predictive controller (MPC) implementation in active vibration control (AVC) is often rendered difficult by fast sampling speeds and extensive actuator-deformation asymmetry. If the control of lightly damped mechanical structures is assumed, the region of attraction containing the set of allowable initial conditions requires a large prediction horizon, making the already computationally demanding on-line process even more complex. Model Predictive Vibration Control provides insight into the predictive control of lightly damped vibrating structures by exploring computationally efficient algorithms which are capable of low frequency vibration control with guaranteed stability and constraint feasibility. In addition to a theoretical primer on active vibration damping and model predictive control, Model Predictive Vibration Control provides a guide through the necessary steps in understanding the founding ideas of predictive control applied in AVC such as: · the implementation of computationally efficient algorithms · control strategies in simulation and experiment and · typical hardware requirements for piezoceramics actuated smart structures. The use of a simple laboratory model and inclusion of over 170 illustrations provides readers with clear and methodical explanations, making Model Predictive Vibration Control the ideal support material for graduates, researchers and industrial practitioners with an interest in efficient predictive control to be utilized in active vibration attenuation.

Model Predictive Vibration Control

Model Predictive Vibration Control PDF Author: Gergely Takács
Publisher: Springer Science & Business Media
ISBN: 1447123336
Category : Technology & Engineering
Languages : en
Pages : 518

Book Description
Real-time model predictive controller (MPC) implementation in active vibration control (AVC) is often rendered difficult by fast sampling speeds and extensive actuator-deformation asymmetry. If the control of lightly damped mechanical structures is assumed, the region of attraction containing the set of allowable initial conditions requires a large prediction horizon, making the already computationally demanding on-line process even more complex. Model Predictive Vibration Control provides insight into the predictive control of lightly damped vibrating structures by exploring computationally efficient algorithms which are capable of low frequency vibration control with guaranteed stability and constraint feasibility. In addition to a theoretical primer on active vibration damping and model predictive control, Model Predictive Vibration Control provides a guide through the necessary steps in understanding the founding ideas of predictive control applied in AVC such as: · the implementation of computationally efficient algorithms · control strategies in simulation and experiment and · typical hardware requirements for piezoceramics actuated smart structures. The use of a simple laboratory model and inclusion of over 170 illustrations provides readers with clear and methodical explanations, making Model Predictive Vibration Control the ideal support material for graduates, researchers and industrial practitioners with an interest in efficient predictive control to be utilized in active vibration attenuation.

Contributions to Model Predictive Active Vibration Control under Parametric Resonance

Contributions to Model Predictive Active Vibration Control under Parametric Resonance PDF Author: Joe Ismail
Publisher:
ISBN: 9783832556136
Category :
Languages : en
Pages : 0

Book Description


Model Predictive Vibration Control

Model Predictive Vibration Control PDF Author: Gergely Takács
Publisher: Springer Science & Business Media
ISBN: 1447123328
Category : Technology & Engineering
Languages : en
Pages : 535

Book Description
Real-time model predictive controller (MPC) implementation in active vibration control (AVC) is often rendered difficult by fast sampling speeds and extensive actuator-deformation asymmetry. If the control of lightly damped mechanical structures is assumed, the region of attraction containing the set of allowable initial conditions requires a large prediction horizon, making the already computationally demanding on-line process even more complex. Model Predictive Vibration Control provides insight into the predictive control of lightly damped vibrating structures by exploring computationally efficient algorithms which are capable of low frequency vibration control with guaranteed stability and constraint feasibility. In addition to a theoretical primer on active vibration damping and model predictive control, Model Predictive Vibration Control provides a guide through the necessary steps in understanding the founding ideas of predictive control applied in AVC such as: · the implementation of computationally efficient algorithms · control strategies in simulation and experiment and · typical hardware requirements for piezoceramics actuated smart structures. The use of a simple laboratory model and inclusion of over 170 illustrations provides readers with clear and methodical explanations, making Model Predictive Vibration Control the ideal support material for graduates, researchers and industrial practitioners with an interest in efficient predictive control to be utilized in active vibration attenuation.

Distributed Model Predictive Control Made Easy

Distributed Model Predictive Control Made Easy PDF Author: José M. Maestre
Publisher: Springer Science & Business Media
ISBN: 9400770065
Category : Technology & Engineering
Languages : en
Pages : 600

Book Description
The rapid evolution of computer science, communication, and information technology has enabled the application of control techniques to systems beyond the possibilities of control theory just a decade ago. Critical infrastructures such as electricity, water, traffic and intermodal transport networks are now in the scope of control engineers. The sheer size of such large-scale systems requires the adoption of advanced distributed control approaches. Distributed model predictive control (MPC) is one of the promising control methodologies for control of such systems. This book provides a state-of-the-art overview of distributed MPC approaches, while at the same time making clear directions of research that deserve more attention. The core and rationale of 35 approaches are carefully explained. Moreover, detailed step-by-step algorithmic descriptions of each approach are provided. These features make the book a comprehensive guide both for those seeking an introduction to distributed MPC as well as for those who want to gain a deeper insight in the wide range of distributed MPC techniques available.

Model Predictive Control System Design and Implementation Using MATLAB®

Model Predictive Control System Design and Implementation Using MATLAB® PDF Author: Liuping Wang
Publisher: Springer Science & Business Media
ISBN: 1848823312
Category : Technology & Engineering
Languages : en
Pages : 378

Book Description
Model Predictive Control System Design and Implementation Using MATLAB® proposes methods for design and implementation of MPC systems using basis functions that confer the following advantages: - continuous- and discrete-time MPC problems solved in similar design frameworks; - a parsimonious parametric representation of the control trajectory gives rise to computationally efficient algorithms and better on-line performance; and - a more general discrete-time representation of MPC design that becomes identical to the traditional approach for an appropriate choice of parameters. After the theoretical presentation, coverage is given to three industrial applications. The subject of quadratic programming, often associated with the core optimization algorithms of MPC is also introduced and explained. The technical contents of this book is mainly based on advances in MPC using state-space models and basis functions. This volume includes numerous analytical examples and problems and MATLAB® programs and exercises.

Piezoelectric-Based Vibration Control

Piezoelectric-Based Vibration Control PDF Author: Nader Jalili
Publisher: Springer Science & Business Media
ISBN: 1441900705
Category : Technology & Engineering
Languages : en
Pages : 519

Book Description
“Piezoelectric-Based Vibration-control Systems: Applications in Micro/Nano Sensors and Actuators” covers: Fundamental concepts in smart (active) materials including piezoelectric and piezoceramics, magnetostrictive, shape-memory materials, and electro/magneto-rheological fluids; Physical principles and constitutive models of piezoelectric materials; Piezoelectric sensors and actuators; Fundamental concepts in mechanical vibration analysis and control with emphasis on distributed-parameters and vibration-control systems; and Recent advances in piezoelectric-based microelectromechanical and nanoelectromechanical systems design and implementation.

Vibration Analysis and Control in Mechanical Structures and Wind Energy Conversion Systems

Vibration Analysis and Control in Mechanical Structures and Wind Energy Conversion Systems PDF Author: Francisco Beltran-Carbajal
Publisher: BoD – Books on Demand
ISBN: 178923056X
Category : Technology & Engineering
Languages : en
Pages : 132

Book Description
This book focuses on recent and innovative methods on vibration analysis, system identification, and diverse control design methods for both wind energy conversion systems and vibrating systems. Advances on both theoretical and experimental studies about analysis and control of oscillating systems in several engineering disciplines are discussed. Various control devices are synthesized and implemented for vibration attenuation tasks. The book is addressed to researchers and practitioners on the subject, as well as undergraduate and postgraduate students and other experts and newcomers seeking more information about the state of the art, new challenges, innovative solutions, and new trends and developments in these areas. The six chapters of the book cover a wide range of interesting issues related to modeling, vibration control, parameter identification, active vehicle suspensions, tuned vibration absorbers, electronically controlled wind energy conversion systems, and other relevant case studies.

Practical Design and Application of Model Predictive Control

Practical Design and Application of Model Predictive Control PDF Author: Nassim Khaled
Publisher: Butterworth-Heinemann
ISBN: 0128139196
Category : Technology & Engineering
Languages : en
Pages : 262

Book Description
Practical Design and Application of Model Predictive Control is a self-learning resource on how to design, tune and deploy an MPC using MATLAB® and Simulink®. This reference is one of the most detailed publications on how to design and tune MPC controllers. Examples presented range from double-Mass spring system, ship heading and speed control, robustness analysis through Monte-Carlo simulations, photovoltaic optimal control, and energy management of power-split and air-handling control. Readers will also learn how to embed the designed MPC controller in a real-time platform such as Arduino®. The selected problems are nonlinear and challenging, and thus serve as an excellent experimental, dynamic system to show the reader the capability of MPC. The step-by-step solutions of the problems are thoroughly documented to allow the reader to easily replicate the results. Furthermore, the MATLAB® and Simulink® codes for the solutions are available for free download. Readers can connect with the authors through the dedicated website which includes additional free resources at www.practicalmpc.com. Illustrates how to design, tune and deploy MPC for projects in a quick manner Demonstrates a variety of applications that are solved using MATLAB® and Simulink® Bridges the gap in providing a number of realistic problems with very hands-on training Provides MATLAB® and Simulink® code solutions. This includes nonlinear plant models that the reader can use for other projects and research work Presents application problems with solutions to help reinforce the information learned

Adaptive and Robust Active Vibration Control

Adaptive and Robust Active Vibration Control PDF Author: Ioan Doré Landau
Publisher: Springer
ISBN: 331941450X
Category : Technology & Engineering
Languages : en
Pages : 396

Book Description
This book approaches the design of active vibration control systems from the perspective of today’s ideas of computer control. It formulates the various design problems encountered in the active management of vibration as control problems and searches for the most appropriate tools to solve them. The experimental validation of the solutions proposed on relevant tests benches is also addressed. To promote the widespread acceptance of these techniques, the presentation eliminates unnecessary theoretical developments (which can be found elsewhere) and focuses on algorithms and their use. The solutions proposed cannot be fully understood and creatively exploited without a clear understanding of the basic concepts and methods, so these are considered in depth. The focus is on enhancing motivations, algorithm presentation and experimental evaluation. MATLAB®routines, Simulink® diagrams and bench-test data are available for download and encourage easy assimilation of the experimental and exemplary material. Three major problems are addressed in the book: active damping to improve the performance of passive absorbers; adaptive feedback attenuation of single and multiple tonal vibrations; and feedforward and feedback attenuation of broad band vibrations. Adaptive and Robust Active Vibration Control will interest practising engineers and help them to acquire new concepts and techniques with good practical validation. It can be used as the basis for a course for graduate students in mechanical, mechatronics, industrial electronics, aerospace and naval engineering. Readers working in active noise control will also discover techniques with a high degree of cross-over potential for use in their field.

Modeling and Control of Vibration in Mechanical Systems

Modeling and Control of Vibration in Mechanical Systems PDF Author: Chunling Du
Publisher: CRC Press
ISBN: 1351833952
Category : Technology & Engineering
Languages : en
Pages : 220

Book Description
From the ox carts and pottery wheels the spacecrafts and disk drives, efficiency and quality has always been dependent on the engineer’s ability to anticipate and control the effects of vibration. And while progress in negating the noise, wear, and inefficiency caused by vibration has been made, more is needed. Modeling and Control of Vibration in Mechanical Systems answers the essential needs of practitioners in systems and control with the most comprehensive resource available on the subject. Written as a reference for those working in high precision systems, this uniquely accessible volume: Differentiates between kinds of vibration and their various characteristics and effects Offers a close-up look at mechanical actuation systems that are achieving remarkably high precision positioning performance Includes techniques for rejecting vibrations of different frequency ranges Covers the theoretical developments and principles of control design with detail elaborate enough that readers will be able to apply the techniques with the help of MATLAB® Details a wealth of practical working examples as well as a number of simulation and experimental results with comprehensive evaluations The modern world’s ever-growing spectra of sophisticated engineering systems such as hard disk drives, aeronautic systems, and manufacturing systems have little tolerance for unanticipated vibration of even the slightest magnitude. Accordingly, vibration control continues to draw intensive focus from top control engineers and modelers. This resource demonstrates the remarkable results of that focus to date, and most importantly gives today’s researchers the technology that they need to build upon into the future. Chunling Du is currently researching modeling and advanced servo control of hard disk drives at the Data Storage Institute in Singapore. Lihua Xie is the Director of the Centre for Intelligent Machines and a professor at Nanyang Technological University in Singapore.