Molecular and Genetic Perspectives of Cold Tolerance in Plants PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Molecular and Genetic Perspectives of Cold Tolerance in Plants PDF full book. Access full book title Molecular and Genetic Perspectives of Cold Tolerance in Plants by Yingfang Zhu. Download full books in PDF and EPUB format.

Molecular and Genetic Perspectives of Cold Tolerance in Plants

Molecular and Genetic Perspectives of Cold Tolerance in Plants PDF Author: Yingfang Zhu
Publisher: Frontiers Media SA
ISBN: 2832507182
Category : Science
Languages : en
Pages : 210

Book Description


Molecular and Genetic Perspectives of Cold Tolerance in Plants

Molecular and Genetic Perspectives of Cold Tolerance in Plants PDF Author: Yingfang Zhu
Publisher: Frontiers Media SA
ISBN: 2832507182
Category : Science
Languages : en
Pages : 210

Book Description


Cold Tolerance in Plants

Cold Tolerance in Plants PDF Author: Shabir Hussain Wani
Publisher: Springer
ISBN: 3030014150
Category : Science
Languages : en
Pages : 203

Book Description
Cold stress is one of the prevalent environmental stresses affecting crop productivity, particularly in temperate regions. Numerous plant types of tropical or subtropical origin are injured or killed by non-freezing low temperature, and display a range of symptoms of chilling injury such as chlorosis, necrosis, or growth retardation. In contrast, chilling tolerant species thrive well at such temperatures. To thrive under cold stress conditions, plants have evolved complex mechanisms to identify peripheral signals that allow them to counter varying environmental conditions. These mechanisms include stress perception, signal transduction, transcriptional activation of stress-responsive target genes, and synthesis of stress-related proteins and other molecules, which help plants to strive through adverse environmental conditions. Conventional breeding methods have met with limited success in improving the cold tolerance of important crop plants through inter-specific or inter-generic hybridization. A better understanding of physiological, biochemical and molecular responses and tolerance mechanisms, and discovery of novel stress-responsive pathways and genes may contribute to efficient engineering strategies that enhance cold stress tolerance. It is therefore imperative to accelerate the efforts to unravel the biochemical, physiological and molecular mechanisms underlying cold stress tolerance in plants. Through this new book, we intend to integrate the contributions from plant scientists targeting cold stress tolerance mechanisms using physiological, biochemical, molecular, structural and systems biology approaches. It is hoped that this collection will serve as a reference source for those who are interested in or are actively engaged in cold stress research.

Heat Stress Tolerance in Plants

Heat Stress Tolerance in Plants PDF Author: Shabir H. Wani
Publisher: John Wiley & Sons
ISBN: 1119432367
Category : Science
Languages : en
Pages : 315

Book Description
Demystifies the genetic, biochemical, physiological, and molecular mechanisms underlying heat stress tolerance in plants Heat stress—when high temperatures cause irreversible damage to plant function or development—severely impairs the growth and yield of agriculturally important crops. As the global population mounts and temperatures continue to rise, it is crucial to understand the biochemical, physiological, and molecular mechanisms of thermotolerance to develop ‘climate-smart’ crops. Heat Stress Tolerance in Plants provides a holistic, cross-disciplinary survey of the latest science in this important field. Presenting contributions from an international team of plant scientists and researchers, this text examines heat stress, its impact on crop plants, and various mechanisms to modulate tolerance levels. Topics include recent advances in molecular genetic approaches to increasing heat tolerance, the potential role of biochemical and molecular markers in screening germplasm for thermotolerance, and the use of next-generation sequencing to unravel the novel genes associated with defense and metabolite pathways. This insightful book: Places contemporary research on heat stress in plants within the context of global climate change and population growth Includes diverse analyses from physiological, biochemical, molecular, and genetic perspectives Explores various approaches to increasing heat tolerance in crops of high commercial value, such as cotton Discusses the applications of plant genomics in the development of thermotolerant ‘designer crops’ An important contribution to the field, Heat Stress Tolerance in Plants is an invaluable resource for scientists, academics, students, and researchers working in fields of pulse crop biochemistry, physiology, genetics, breeding, and biotechnology.

Drought Stress Tolerance in Plants, Vol 2

Drought Stress Tolerance in Plants, Vol 2 PDF Author: Mohammad Anwar Hossain
Publisher: Springer
ISBN: 3319324233
Category : Technology & Engineering
Languages : en
Pages : 604

Book Description
Drought is one of the most severe constraints to crop productivity worldwide, and thus it has become a major concern for global food security. Due to an increasing world population, droughts could lead to serious food shortages by 2050. The situation may worsen due to predicated climatic changes that may increase the frequency, duration and severity of droughts. Hence, there is an urgent need to improve our understanding of the complex mechanisms associated with drought tolerance and to develop modern crop varieties that are more resilient to drought. Identification of the genes responsible for drought tolerance in plants will contribute to our understanding of the molecular mechanisms that could enable crop plants to respond to drought. The discovery of novel drought related genes, the analysis of their expression patterns in response to drought, and determination of the functions these genes play in drought adaptation will provide a base to develop effective strategies to enhance the drought tolerance of crop plants. Plant breeding efforts to increase crop yields in dry environments have been slow to date mainly due to our poor understanding of the molecular and genetic mechanisms involved in how plants respond to drought. In addition, when it comes to combining favourable alleles, there are practical obstacles to developing superior high yielding genotypes fit for drought prone environments. Drought Tolerance in Plants, Vol 2: Molecular and Genetic Perspectives combines novel topical findings, regarding the major molecular and genetic events associated with drought tolerance, with contemporary crop improvement approaches. This volume is unique as it makes available for its readers not only extensive reports of existing facts and data, but also practical knowledge and overviews of state-of-the-art technologies, across the biological fields, from plant breeding using classical and molecular genetic information, to the modern omic technologies, that are now being used in drought tolerance research to breed drought-related traits into modern crop varieties. This book is useful for teachers and researchers in the fields of plant breeding, molecular biology and biotechnology.

Cold Hardiness in Plants

Cold Hardiness in Plants PDF Author: Tony H. H. Chen
Publisher: CABI
ISBN: 1845930118
Category : Nature
Languages : en
Pages : 270

Book Description
Based on papers from the 7th International Plant Cold Hardiness Seminar held in Japan in 2004, this book presents the latest research findings on plant freezing and chilling stress from major laboratories around the world. The chapters focus on various aspects of molecular genetics and the utilization of transgenic plants to further our understanding of plant cold hardiness at the molecular level. Topics covered include: vernalization genes in winter cereals; global analysis of gene networks to solve complex abiotic stress responses; control of growth and cold acclimation in silver birch and the effect of Plasma Membrane-associated Proteins on Acquisition of Freezing Tolerance in Arabidopsis thaliana.

Plant Cold Hardiness

Plant Cold Hardiness PDF Author: Paul H. Li
Publisher: Springer Science & Business Media
ISBN: 1461507111
Category : Science
Languages : en
Pages : 287

Book Description
th We compiled this volume mostly from presentations at the 6 International Plant Cold Hardiness Seminar (PCHS) after consulting with Professor Tony H. H. Chen, Oregon State University, USA, Professor Pekka Heino, University of Helsinki, Finland, th and Dr. Gareth J. Warren, University of London, Surrey, UK. The 6 International PCHS was held at the Unitas Congress Center, Helsinki, Finland from July 1-5, 2001. There were 110 registered scientists at the serttinar representing 20 countries: Australia, Belgium, Canada, Chile, the Czech Republic, Denmark, Estonia, Finland, Gennany, Hungary, Iceland, Italy, Japan, Norway, Poland, Spain, Sweden, Taiwan, United Kingdom, and United States of America. The infonnation compiled represents the state of the art of research in phmt cold hardiness in tenns of gene regulation, gene expression, signal transduction, the physiology of cold hardiness and, ultimately, the genetic engineering for cold tolerant plants. The International PCHS was initiated in 1977 at the University of Minnesota, St. Paul, Minnesota. It has been traditionally held at 5-year intervals at various locations. th Because of the rapid advances of research in plant cold hardiness, attendees at the 6 meeting unanimously adopted a resolution to hold the seminar in 3-year intervals instead of 5 in the future. Consequently, the next seminar will be held in 2004 in Sapporo, Japan, and Professor Seizo Fujikawa from Hokkaido University will serve as the host.

Plant Cold Hardiness

Plant Cold Hardiness PDF Author: Paul H. Li
Publisher: Springer Science & Business Media
ISBN: 1489902775
Category : Science
Languages : en
Pages : 360

Book Description
This volume is compiled based on the proceedings of the 5th International Plant Cold Hardiness Seminar, which was held at Oregon State University, Corvallis, Oregon, USA, August 5 to 8, 1996. Participants representing 16 nations and 22 U. S. states attended the seminar. Researchers came from major laboratories around the world involving plant cold hardiness research. The information compiled in this volume represents the state-of the-art research and our understanding of plant cold hardiness in terms of molecular biol ogy, biochemistry, and physiology. The 1996 International Plant Cold Hardiness Seminar was the fifth of the series; it was first held in 1977 at the University of Minnesota, St. Paul, MN, and since then has met every 5 years. The overall goal of this seminar series is to foster the exchange of ideas and research findings among the diverse groups of scientists studying freezing and chilling stresses from a wide variety of perspectives. This is the only international conference focus ing its programs entirely on low temperature stress in plants. In accordance with the tradi tion, the fifth conference focused on freezing and chilling stress of plants and covered various aspects of plant cold hardiness, including molecular genetics, biochemistry, physi ology, and agricultural applications. All contributors to this volume are eminent researchers who have had significant contributions to the knowledge of plant cold hardiness.

Low-Temperature Stress in Plants: Molecular Responses, Tolerance Mechanisms, Plant Biodesign and Breeding Applications

Low-Temperature Stress in Plants: Molecular Responses, Tolerance Mechanisms, Plant Biodesign and Breeding Applications PDF Author: Jin Xu
Publisher: Frontiers Media SA
ISBN: 2832549195
Category : Science
Languages : en
Pages : 155

Book Description
Low-temperature stress is the primary abiotic stress that affects the growth and development of plants and their geographical distribution. This can lead to the solidification of membrane lipids and decrease of enzymatic reaction rate in plants in a relatively short time, or indirectly affect the imbalance of respiration and photosynthesis, accumulation of toxic substances, ATP depletion, cell solute leakage and wilting due to water loss. Low-temperature stress can be divided into chilling stress and freezing stress according to the damage caused to plants. Both chilling and freezing stress drastically threaten global food security and species diversity in the northern and frigid temperate zones. Once plants experience low-temperature stress, the regulation mechanism of gene expression is rapidly activated to cope with the adverse environment.

Rice Improvement

Rice Improvement PDF Author: Jauhar Ali
Publisher: Springer Nature
ISBN: 3030665305
Category : Technology & Engineering
Languages : en
Pages : 507

Book Description
This book is open access under a CC BY 4.0 license. By 2050, human population is expected to reach 9.7 billion. The demand for increased food production needs to be met from ever reducing resources of land, water and other environmental constraints. Rice remains the staple food source for a majority of the global populations, but especially in Asia where ninety percent of rice is grown and consumed. Climate change continues to impose abiotic and biotic stresses that curtail rice quality and yields. Researchers have been challenged to provide innovative solutions to maintain, or even increase, rice production. Amongst them, the ‘green super rice’ breeding strategy has been successful for leading the development and release of multiple abiotic and biotic stress tolerant rice varieties. Recent advances in plant molecular biology and biotechnologies have led to the identification of stress responsive genes and signaling pathways, which open up new paradigms to augment rice productivity. Accordingly, transcription factors, protein kinases and enzymes for generating protective metabolites and proteins all contribute to an intricate network of events that guard and maintain cellular integrity. In addition, various quantitative trait loci associated with elevated stress tolerance have been cloned, resulting in the detection of novel genes for biotic and abiotic stress resistance. Mechanistic understanding of the genetic basis of traits, such as N and P use, is allowing rice researchers to engineer nutrient-efficient rice varieties, which would result in higher yields with lower inputs. Likewise, the research in micronutrients biosynthesis opens doors to genetic engineering of metabolic pathways to enhance micronutrients production. With third generation sequencing techniques on the horizon, exciting progress can be expected to vastly improve molecular markers for gene-trait associations forecast with increasing accuracy. This book emphasizes on the areas of rice science that attempt to overcome the foremost limitations in rice production. Our intention is to highlight research advances in the fields of physiology, molecular breeding and genetics, with a special focus on increasing productivity, improving biotic and abiotic stress tolerance and nutritional quality of rice.

Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants

Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants PDF Author: Mohammad Anwar Hossain
Publisher: Academic Press
ISBN: 0128178930
Category : Science
Languages : en
Pages : 364

Book Description
Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants provides the latest, in-depth understanding of the molecular mechanisms associated with the development of stress and cross-stress tolerance in plants. Plants growing under field conditions are constantly exposed, either sequentially or simultaneously, to many abiotic or biotic stress factors. As a result, many plants have developed unique strategies to respond to ever-changing environmental conditions, enabling them to monitor their surroundings and adjust their metabolic systems to maintain homeostasis. Recently, priming mediated stress and cross-stress tolerance (i.e., greater tolerance to a second, stronger stress after exposure to a different, milder primary stress) have attracted considerable interest within the scientific community as potential means of stress management and for producing stress-resistant crops to aid global food security. Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants comprehensively reviews the physiological, biochemical, and molecular basis of cross-tolerance phenomena, allowing researchers to develop strategies to enhance crop productivity under stressful conditions and to utilize natural resources more efficiently. The book is a valuable asset for plant and agricultural scientists in corporate or government environments, as well as educators and advanced students looking to promote future research into plant stress tolerance. Provides comprehensive information for developing multiple stress-tolerant crop varieties Includes in-depth physiological, biochemical, and molecular information associated with cross-tolerance Includes contribution from world-leading cross-tolerance research group Presents color images and diagrams for effective communication of key concepts