Optical Nonlinearities in Chalcogenide Glasses and Their Applications

Optical Nonlinearities in Chalcogenide Glasses and Their Applications PDF Author: A. Zakery
Publisher: Springer Science & Business Media
ISBN: 3540710663
Category : Science
Languages : en
Pages : 207

Book Description
This book reviews techniques used to characterize non-linear optical constants of chalcogenide glasses in bulk or thin films, and presents the properties of many chalcogenide systems. A range of applications of these glasses are surveyed, including ultra-fast switching, optical limiting, second harmonic generation and electro-optic effects. Also addressed are suitability of chalcogenide films in all-optical integrated circuits, fabrication of rib as well as ridge waveguides and of fiber gratings.

Chalcogenide Glasses

Chalcogenide Glasses PDF Author: J-L Adam
Publisher: Woodhead Publishing
ISBN: 0857093568
Category : Technology & Engineering
Languages : en
Pages : 704

Book Description
The unique properties and functionalities of chalcogenide glasses make them promising materials for photonic applications. Chalcogenide glasses are transparent from the visible to the near infrared region and can be moulded into lenses or drawn into fibres. They have useful commercial applications as components for lenses for infrared cameras, and chalcogenide glass fibres and optical components are used in waveguides for use with lasers, for optical switching, chemical and temperature sensing and phase change memories. Chalcogenide glasses comprehensively reviews the latest technological advances in this field and the industrial applications of the technology. Part one outlines the preparation methods and properties of chalcogenide glasses, including the thermal properties, structure, and optical properties, before going on to discuss mean coordination and topological constraints in chalcogenide network glasses, and the photo-induced phenomena in chalcogenide glasses. This section also covers the ionic conductivity and physical aging of chalcogenide glasses, deposition techniques for chalcogenide thin films, and transparent chalcogenide glass-ceramics. Part two explores the applications of chalcogenide glasses. Topics discussed include rare-earth-doped chalcogenide glass for lasers and amplifiers, the applications of chalcogenide glasses for infrared sensing, microstructured optical fibres for infrared applications, and chalcogenide glass waveguide devices for all-optical signal processing. This section also discusses the control of light on the nanoscale with chalcogenide thin films, chalcogenide glass resists for lithography, and chalcogenide for phase change optical and electrical memories. The book concludes with an overview of chalcogenide glasses as electrolytes for batteries. Chalcogenide glasses comprehensively reviews the latest technological advances and applications of chalcogenide glasses, and is an essential text for academics, materials scientists and electrical engineers working in the photonics and optoelectronics industry. Outlines preparation methods and properties, and explores applications of chalcogenide glasses. Covers the ionic conductivity and physical aging of chalcogenide glasses, deposition techniques for chalcogenide thin films, and transparent chalcogenide glass-ceramics Discusses the control of light on the nanoscale with chalcogenide thin films, chalcogenide glass resists for lithography, and chalcogenide for phase change optical and electrical memories

Nonlinear Optical Properties of Chalcogenide Glasses

Nonlinear Optical Properties of Chalcogenide Glasses PDF Author: Peter Thielen
Publisher:
ISBN:
Category :
Languages : en
Pages : 230

Book Description


Nonlinear Optical Properties of Materials

Nonlinear Optical Properties of Materials PDF Author: Rashid A. Ganeev
Publisher: Springer
ISBN: 9400760221
Category : Science
Languages : en
Pages : 258

Book Description
This book is mostly concerned on the experimental research of the nonlinear optical characteristics of various media, low- and high-order harmonic generation in different materials, and formation, and nonlinear optical characterization of clusters. We also demonstrate the inter-connection between these areas of nonlinear optics. Nonlinear optical properties of media such as optical limiting can be applied in various areas of science and technology. To define suitable materials for these applications, one has to carefully analyse the nonlinear optical characteristics of various media, such as the nonlinear refractive indices, coefficients of nonlinear absorption, saturation absorption intensities, etc. Knowing the nonlinear optical parameters of materials is also important for describing the propagation effects, self-interaction of intense laser pulses, and optimisation of various nonlinear optical processes. Among those processes one can admit the importance of the studies of the frequency conversion of coherent laser sources. The area of interest for nonlinear optical characterization of materials is also closely related with new field of nanostructures formation and application during laser-matter interaction. We show how the nonlinear optical analysis of materials leads to improvement of their high-order nonlinear optical response during the interaction with strong laser fields. Ablation-induced nanoparticles formation is correlated with their applications as efficient sources of coherent short-wavelength photons. From other side, recent achievements of harmonic generation in plasmas are closely related with the knowledge of the properties of materials in the laser plumes. All of these studies are concerned with the low-order nonlinear optical features of various materials. The novelty of the approach developed in present book is related with inter-connection of those studies with each other.

Optical Properties of Materials and Their Applications

Optical Properties of Materials and Their Applications PDF Author: Jai Singh
Publisher: John Wiley & Sons
ISBN: 111950631X
Category : Science
Languages : en
Pages : 667

Book Description
Provides a semi-quantitative approach to recent developments in the study of optical properties of condensed matter systems Featuring contributions by noted experts in the field of electronic and optoelectronic materials and photonics, this book looks at the optical properties of materials as well as their physical processes and various classes. Taking a semi-quantitative approach to the subject, it presents a summary of the basic concepts, reviews recent developments in the study of optical properties of materials and offers many examples and applications. Optical Properties of Materials and Their Applications, 2nd Edition starts by identifying the processes that should be described in detail and follows with the relevant classes of materials. In addition to featuring four new chapters on optoelectronic properties of organic semiconductors, recent advances in electroluminescence, perovskites, and ellipsometry, the book covers: optical properties of disordered condensed matter and glasses; concept of excitons; photoluminescence, photoinduced changes, and electroluminescence in noncrystalline semiconductors; and photoinduced bond breaking and volume change in chalcogenide glasses. Also included are chapters on: nonlinear optical properties of photonic glasses; kinetics of the persistent photoconductivity in crystalline III-V semiconductors; and transparent white OLEDs. In addition, readers will learn about excitonic processes in quantum wells; optoelectronic properties and applications of quantum dots; and more. Covers all of the fundamentals and applications of optical properties of materials Includes theory, experimental techniques, and current and developing applications Includes four new chapters on optoelectronic properties of organic semiconductors, recent advances in electroluminescence, perovskites, and ellipsometry Appropriate for materials scientists, chemists, physicists and electrical engineers involved in development of electronic materials Written by internationally respected professionals working in physics and electrical engineering departments and government laboratories Optical Properties of Materials and Their Applications, 2nd Edition is an ideal book for senior undergraduate and postgraduate students, and teaching and research professionals in the fields of physics, chemistry, chemical engineering, materials science, and materials engineering.

Semiconducting Chalcogenide Glass II

Semiconducting Chalcogenide Glass II PDF Author: Robert Fairman
Publisher: Elsevier
ISBN: 0080541054
Category : Science
Languages : en
Pages : 182

Book Description
Chalcogenide glass is made up of many elements from the Chalcogenide group. The glass is transparent to infrared light and is useful as a semiconductor in many electronic devices. For example, chalcogenide glass fibers are a component of devices used to perform laser surgery. The properties of chalcogenide glass result not only from their chemical composition and atomic structure, but also from the impact of numerous external factors. A comprehensive survey is presented of the properties of chalcogenide glass under various external impacts. Practical recommendations are presented for a wide range of applications. Part II is the second part of a three-volume work within the Semiconductors and Semimetals series. * The first collective monograph written by Eastern European scientists on the electrical and optical properties of chalcogenide vitreous semiconductors (CVS). * Contributions by B.G. Kolomiets, who discovered the properties of chalcogenide glass in 1955! * Provides objective evidence and discussion by authors from opposing positions.

Handbook of Optical Materials

Handbook of Optical Materials PDF Author: Marvin J. Weber
Publisher: CRC Press
ISBN: 1351835505
Category : Technology & Engineering
Languages : en
Pages : 564

Book Description
For years scientists turned to the CRC Handbook of Laser Science & Technology for reliable data on optical materials. Out of print for several years, that standard-setting work now has a successor: the Handbook of Optical Materials. This new handbook is an authoritative compilation of the physical properties of materials used in all types of lasers and optical systems. In it, scientist, author, and editor Dr. Marvin J. Weber provides extensive data tabulations and references for the most important optical materials, including crystals, glasses, polymers, metals, liquids, and gases. The properties detailed include both linear and nonlinear optical properties, mechanical properties, thermal properties together with many additional special properties, such as electro-, magneto-, and elasto-optic properties. Using a minimum of narration and logically organized by material properties, the handbook's unique presentation simplifies the process of comparing different materials for their suitability in particular applications. Appendices furnish a wealth of other useful information, including lists of the many abbreviations and acronyms that proliferate in this field. The Handbook of Optical Materials is simply the most complete one-stop source available for materials data essential to lasers and optical systems.

The Properties of Optical Glass

The Properties of Optical Glass PDF Author: Hans Bach
Publisher: Springer Science & Business Media
ISBN: 3642577695
Category : Science
Languages : en
Pages : 430

Book Description
From the reviews: "The book should be acquired by all libraries with an interest in glass science and applications...the title will endure for many years as the standard work on the properties of optical glass." Optical Systems Engineering

Non-Crystalline Chalcogenicides

Non-Crystalline Chalcogenicides PDF Author: M.A. Popescu
Publisher: Springer Science & Business Media
ISBN: 9781402003592
Category : Technology & Engineering
Languages : en
Pages : 396

Book Description
The earliest experimental data on an oxygen-free glass have been published by Schulz-Sellack in 1870 [1]. Later on, in 1902, Wood [2], as well as Meier in 1910 [3], carried out the first researches on the optical properties of vitreous selenium. The interest in the glasses that exhibit transparency in the infrared region of the optical spectrum rose at the beginning of the twentieth century. Firstly were investigated the heavy metal oxides and the transparency limit was extended from (the case of the classical oxide glasses) up to wavelength. In order to extend this limit above the scientists tried the chemical compositions based on the elements of the sixth group of the Periodic Table, the chalcogens: sulphur, selenium and tellurium. The systematic research in the field of glasses based on chalcogens, called chalcogenide glasses, started at the middle of our century. In 1950 Frerichs [4] investigated the glass and published the paper: “New optical glasses transparent in infrared up to 12 . Several years later he started the study of the selenium glass and prepared several binary glasses with sulphur [5]. Glaze and co-workers [6] developed in 1957 the first method for the preparation of the glass at the industrial scale, while Winter-Klein [7] published reports on numerous chalcogenides prepared in the vitreous state.

Semiconducting Chalcogenide Glass III

Semiconducting Chalcogenide Glass III PDF Author: Robert Fairman
Publisher: Elsevier
ISBN: 0080541062
Category : Science
Languages : en
Pages : 144

Book Description
Chalcogenide glass is made up of many elements from the Chalcogenide group. The glass is transparent to infrared light and is useful as a semiconductor in many electronic devices. For example, chalcogenide glass fibers are a component of devices used to perform laser surgery. Semiconducting Chalcogenide Glass III: Applications of Chalcogenide Glasses is a comprehensive overview of designs of various chalcogenide glass devices are presented, including switches, phase inverters, voltage stabilizers, oscillators, indicators and display control circuits, memory devices, and sensors. A special chapter is devoted to chalcogenide glass applications in optical fibers. This collective monograph is intended to survey the current state of chalcogenide glass applications to facilitate further development. The first collective monograph written by Eastern European scientists covering electrical and optical properties of chalcogenide vitreous semiconductors (CVS) Contributions by B.G. Kolomiets, who discovered the properties of chalcogenide glass in 1955! Provides evidence and discussion by authors from opposing positions