Satellite Soil Moisture Retrieval PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Satellite Soil Moisture Retrieval PDF full book. Access full book title Satellite Soil Moisture Retrieval by Prashant K Srivastava. Download full books in PDF and EPUB format.

Satellite Soil Moisture Retrieval

Satellite Soil Moisture Retrieval PDF Author: Prashant K Srivastava
Publisher: Elsevier
ISBN: 0128033894
Category : Science
Languages : en
Pages : 440

Book Description
Satellite Soil Moisture Retrieval: Techniques and Applications offers readers a better understanding of the scientific underpinnings, development, and application of soil moisture retrieval techniques and their applications for environmental modeling and management, bringing together a collection of recent developments and rigorous applications of soil moisture retrieval techniques from optical and infrared datasets, such as the universal triangle method, vegetation indices based approaches, empirical models, and microwave techniques, particularly by utilizing earth observation datasets such as IRS III, MODIS, Landsat7, Landsat8, SMOS, AMSR-e, AMSR2 and the upcoming SMAP. Through its coverage of a wide variety of soil moisture retrieval applications, including drought, flood, irrigation scheduling, weather forecasting, climate change, precipitation forecasting, and several others, this is the first book to promote synergistic and multidisciplinary activities among scientists and users working in the hydrometeorological sciences. Demystifies soil moisture retrieval and prediction Links soil moisture retrieval techniques with new satellite missions for earth and environmental science oriented problems Written to be accessible to a wider range of professionals with a common interest in geo-spatial techniques, remote sensing, sustainable water resource development, and earth and environmental issues

Satellite Soil Moisture Retrieval

Satellite Soil Moisture Retrieval PDF Author: Prashant K Srivastava
Publisher: Elsevier
ISBN: 0128033894
Category : Science
Languages : en
Pages : 440

Book Description
Satellite Soil Moisture Retrieval: Techniques and Applications offers readers a better understanding of the scientific underpinnings, development, and application of soil moisture retrieval techniques and their applications for environmental modeling and management, bringing together a collection of recent developments and rigorous applications of soil moisture retrieval techniques from optical and infrared datasets, such as the universal triangle method, vegetation indices based approaches, empirical models, and microwave techniques, particularly by utilizing earth observation datasets such as IRS III, MODIS, Landsat7, Landsat8, SMOS, AMSR-e, AMSR2 and the upcoming SMAP. Through its coverage of a wide variety of soil moisture retrieval applications, including drought, flood, irrigation scheduling, weather forecasting, climate change, precipitation forecasting, and several others, this is the first book to promote synergistic and multidisciplinary activities among scientists and users working in the hydrometeorological sciences. Demystifies soil moisture retrieval and prediction Links soil moisture retrieval techniques with new satellite missions for earth and environmental science oriented problems Written to be accessible to a wider range of professionals with a common interest in geo-spatial techniques, remote sensing, sustainable water resource development, and earth and environmental issues

Geospatial Technologies for Crops and Soils

Geospatial Technologies for Crops and Soils PDF Author: Tarik Mitran
Publisher: Springer
ISBN: 9789811568664
Category : Science
Languages : en
Pages : 0

Book Description
The sustainable development of the agriculture sector is the only option to meet the demands of increased and economically viable production in a changing climate. This means there is a need to introduce the latest technologies to enhance production, and also help policymakers make decisions for the future. Geospatial technologies & tools, such as remote sensing, geographical information systems (GIS), global positioning systems (GPS), and mobile & web applications, provide unique capabilities to analyze multi-scale, multi-temporal datasets, and support decision-making in sustainable agriculture development and natural resources management. Further, the availability of reliable and timely geospatial information on natural resources and environmental conditions is essential for sustainable agricultural development and food security. Since remote sensing solutions are fast, non-destructive and have large spatial coverage, they can play a significant role in the identification, inventory, and mapping of land resources. Over the past four decades, remote sensing has proved to be a cost-effective and powerful tool to assess crop and soil properties in varying spatial and temporal scales using both visual and digital techniques. Satellite remote sensing coupled with GIS & mobile-app based positional information has emerged as an efficient tool for optimizing input resources, and minimizing cost of production and risk of biotic/ abiotic factors nature to promote sustainable agriculture. This book comprehensively documents the applications of space-based technologies for crop and soil assessments for the sustainable development of agriculture.

Remote Sensing of Energy Fluxes and Soil Moisture Content

Remote Sensing of Energy Fluxes and Soil Moisture Content PDF Author: George Petropoulos
Publisher: CRC Press
ISBN: 1466505796
Category : Science
Languages : en
Pages : 562

Book Description
Integrating decades of research conducted by leading scientists in the field, Remote Sensing of Energy Fluxes and Soil Moisture Content provides an overview of state-of-the-art methods and modeling techniques employed for deriving spatio-temporal estimates of energy fluxes and soil surface moisture from remote sensing. It also underscores the range

Remote Sensing of the Terrestrial Water Cycle

Remote Sensing of the Terrestrial Water Cycle PDF Author: Venkataraman Lakshmi
Publisher: John Wiley & Sons
ISBN: 1118872266
Category : Science
Languages : en
Pages : 572

Book Description
Remote Sensing of the Terrestrial Water Cycle is an outcome of the AGU Chapman Conference held in February 2012. This is a comprehensive volume that examines the use of available remote sensing satellite data as well as data from future missions that can be used to expand our knowledge in quantifying the spatial and temporal variations in the terrestrial water cycle. Volume highlights include: - An in-depth discussion of the global water cycle - Approaches to various problems in climate, weather, hydrology, and agriculture - Applications of satellite remote sensing in measuring precipitation, surface water, snow, soil moisture, groundwater, modeling, and data assimilation - A description of the use of satellite data for accurately estimating and monitoring the components of the hydrological cycle - Discussion of the measurement of multiple geophysical variables and properties over different landscapes on a temporal and a regional scale Remote Sensing of the Terrestrial Water Cycle is a valuable resource for students and research professionals in the hydrology, ecology, atmospheric sciences, geography, and geological sciences communities.

Retrieval of Soil Moisture Using Microwave Spaceborne

Retrieval of Soil Moisture Using Microwave Spaceborne PDF Author: Jyoti Sharma
Publisher: A.K. Publications
ISBN: 9788358131447
Category :
Languages : en
Pages : 0

Book Description
Retrieval of soil moisture using microwave spaceborne refers to the measurement and estimation of the amount of water present in the soil using satellite-borne microwave radiometers. The microwave radiometry technology works by measuring the microwave radiation emitted by the soil surface, which is related to the soil moisture content. The data collected by these radiometers is then processed using algorithms to estimate the soil moisture content. Soil moisture information is crucial for a variety of applications, including weather prediction, drought monitoring, irrigation planning, vegetation monitoring, and water resource management. The ability to obtain soil moisture measurements on a large scale through spaceborne technology provides a powerful tool for improving our understanding of land surface processes and the water cycle. Spaceborne soil moisture retrieval has proven to be an effective method for monitoring soil moisture over large areas and has provided valuable information for numerous studies in hydrology, agriculture, and climate modeling. However, the accuracy of these estimates is dependent on several factors, including the calibration of the radiometer, the development of robust algorithms, and the availability of ground validation data. Ongoing research is focused on improving the accuracy of soil moisture retrieval from spaceborne microwave radiometers and increasing our understanding of the relationships between soil moisture and other land surface variables. Xray systems in medical science, laser scanning for atmospheric constituents, and sonar sounding of sea level. Remote sensing utilizes electromagnetic radiation as an information carrier from the target to the sensing device. It involves the interaction of electromagnetic radiations to the targeting object. The radiations, reflected, transmitted, or emitted by the object are captured by the sensors to find the target information. These sensors can be mounted on different platforms such as automotive vehicles, aircraft, rockets, hot air balloons, drones, space shuttles, and satellites. Remote sensing is part of countless possible innovations due to the roaming of the satellites around our Earth. Satellites play a crucial role in developing various technologies such as global mapping, GPS, urban planning, etc. The primary applications of remote sensing are the study of Earth's surface, Earth's atmosphere, LU/LC management, climate change monitoring, agriculture, drought, etc.

Soil Moisture

Soil Moisture PDF Author: Gabriela Civeira
Publisher: BoD – Books on Demand
ISBN: 1789851033
Category : Science
Languages : en
Pages : 120

Book Description
This book is aimed at the majority of audiences who need to rapidly obtain a concise overview of soil moisture measurement and management. Many existing soil moisture textbooks cater for a traditional market where readers rely on years of study presented in a slender discipline. The evolution of segmental schemes has meant that soil moisture is now often included as a part of broad-based soil science programs. For those opting to specialise in soil moisture, this is a good book to choose. This book will be very useful to students, researchers and other readers who do not hold a traditional scientific background, such as those studying geography, environment science, ecology and agriculture. This book provides a concise overview of soil moisture knowledge.

Advances in Remote Sensing for Natural Resource Monitoring

Advances in Remote Sensing for Natural Resource Monitoring PDF Author: Prem C. Pandey
Publisher: John Wiley & Sons
ISBN: 1119616034
Category : Technology & Engineering
Languages : en
Pages : 528

Book Description
Sustainable management of natural resources is an urgent need, given the changing climatic conditions of Earth systems. The ability to monitor natural resources precisely and accurately is increasingly important. New and advanced remote sensing tools and techniques are continually being developed to monitor and manage natural resources in an effective way. Remote sensing technology uses electromagnetic sensors to record, measure and monitor even small variations in natural resources. The addition of new remote sensing datasets, processing techniques and software makes remote sensing an exact and cost-effective tool and technology for natural resource monitoring and management. Advances in Remote Sensing for Natural Resources Monitoring provides a detailed overview of the potential applications of advanced satellite data in natural resource monitoring. The book determines how environmental and - ecological knowledge and satellite-based information can be effectively combined to address a wide array of current natural resource management needs. Each chapter covers different aspects of remote sensing approach to monitor the natural resources effectively, to provide a platform for decision and policy. This important work: Provides comprehensive coverage of advances and applications of remote sensing in natural resources monitoring Includes new and emerging approaches for resource monitoring with case studies Covers different aspects of forest, water, soil- land resources, and agriculture Provides exemplary illustration of themes such as glaciers, surface runoff, ground water potential and soil moisture content with temporal analysis Covers blue carbon, seawater intrusion, playa wetlands, and wetland inundation with case studies Showcases disaster studies s

Proximal Soil Sensing

Proximal Soil Sensing PDF Author: Raphael A. Viscarra Rossel
Publisher: Springer Science & Business Media
ISBN: 9048188598
Category : Science
Languages : en
Pages : 440

Book Description
This book reports on developments in Proximal Soil Sensing (PSS) and high resolution digital soil mapping. PSS has become a multidisciplinary area of study that aims to develop field-based techniques for collecting information on the soil from close by, or within, the soil. Amongst others, PSS involves the use of optical, geophysical, electrochemical, mathematical and statistical methods. This volume, suitable for undergraduate course material and postgraduate research, brings together ideas and examples from those developing and using proximal sensors and high resolution digital soil maps for applications such as precision agriculture, soil contamination, archaeology, peri-urban design and high land-value applications, where there is a particular need for high spatial resolution information. The book in particular covers soil sensor sampling, proximal soil sensor development and use, sensor calibrations, prediction methods for large data sets, applications of proximal soil sensing, and high-resolution digital soil mapping. Key themes: soil sensor sampling – soil sensor calibrations – spatial prediction methods – reflectance spectroscopy – electromagnetic induction and electrical resistivity – radar and gamma radiometrics – multi-sensor platforms – high resolution digital soil mapping - applications Raphael A. Viscarra Rossel is a scientist at the Commonwealth Scientific and Industrial Research Organisation (CSIRO) of Australia. Alex McBratney is Pro-Dean and Professor of Soil Science in the Faculty of Agriculture Food & Natural Resources at the University of Sydney in Australia. Budiman Minasny is a Senior Research Fellow in the Faculty of Agriculture Food & Natural Resources at the University of Sydney in Australia.

Microwave Remote Sensing of Soil Moisture

Microwave Remote Sensing of Soil Moisture PDF Author: Jiangyuan Zeng
Publisher: Mdpi AG
ISBN: 9783036590943
Category : Science
Languages : en
Pages : 0

Book Description
This reprint focuses on the most advanced theories, models, algorithms, and products related to microwave remote sensing of soil moisture. Over the past few decades, significant efforts have been made to develop models, retrieval algorithms, downscaling methods, and validation strategies related to microwave remote sensing of soil moisture. Following the turn of the century, a series of microwave-based satellites/sensors have been successfully launched, and satellite soil moisture products have become increasingly abundant, greatly promoting the various applications of satellite soil moisture datasets. Despite numerous studies and achievements in this field, great challenges remain, such as the spatial resolution, retrieval accuracy, and validation strategies related to satellite soil moisture datasets. This reprint covers research progress on the following topics: (1) downscaling passive microwave-based soil moisture products, (2) estimating soil moisture from active microwave observations, (3) presenting some new algorithms (freeze-thaw state detection algorithm) and models (soil dielectric models) related to microwave remote sensing of soil moisture, (4) evaluating microwave-based soil moisture products, and (5) reviewing the state-of-the-art techniques and algorithms used to estimate and improve the quality of soil moisture estimations.

Handbook of Hydrometeorological Ensemble Forecasting

Handbook of Hydrometeorological Ensemble Forecasting PDF Author: Qingyun Duan
Publisher: Springer
ISBN: 9783642399244
Category : Science
Languages : en
Pages : 0

Book Description
Hydrometeorological prediction involves the forecasting of the state and variation of hydrometeorological elements -- including precipitation, temperature, humidity, soil moisture, river discharge, groundwater, etc.-- at different space and time scales. Such forecasts form an important scientific basis for informing public of natural hazards such as cyclones, heat waves, frosts, droughts and floods. Traditionally, and at most currently operational centers, hydrometeorological forecasts are deterministic, “single-valued” outlooks: i.e., the weather and hydrological models provide a single best guess of the magnitude and timing of the impending events. These forecasts suffer the obvious drawback of lacking uncertainty information that would help decision-makers assess the risks of forecast use. Recently, hydrometeorological ensemble forecast approaches have begun to be developed and used by operational collection of hydrometeorological services. In contrast to deterministic forecasts, ensemble forecasts are a multiple forecasts of the same events. The ensemble forecasts are generated by perturbing uncertain factors such as model forcings, initial conditions, and/or model physics. Ensemble techniques are attractive because they not only offer an estimate of the most probable future state of the hydrometeorological system, but also quantify the predictive uncertainty of a catastrophic hydrometeorological event occurring. The Hydrological Ensemble Prediction Experiment (HEPEX), initiated in 2004, has signaled a new era of collaboration toward the development of hydrometeorological ensemble forecasts. By bringing meteorologists, hydrologists and hydrometeorological forecast users together, HEPEX aims to improve operational hydrometeorological forecast approaches to a standard that can be used with confidence by emergencies and water resources managers. HEPEX advocates a hydrometeorological ensemble prediction system (HEPS) framework that consists of several basic building blocks. These components include:(a) an approach (typically statistical) for addressing uncertainty in meteorological inputs and generating statistically consistent space/time meteorological inputs for hydrological applications; (b) a land data assimilation approach for leveraging observation to reduce uncertainties in the initial and boundary conditions of the hydrological system; (c) approaches that address uncertainty in model parameters (also called ‘calibration’); (d) a hydrologic model or other approach for converting meteorological inputs into hydrological outputs; and finally (e) approaches for characterizing hydrological model output uncertainty. Also integral to HEPS is a verification system that can be used to evaluate the performance of all of its components. HEPS frameworks are being increasingly adopted by operational hydrometeorological agencies around the world to support risk management related to flash flooding, river and coastal flooding, drought, and water management. Real benefits of ensemble forecasts have been demonstrated in water emergence management decision making, optimization of reservoir operation, and other applications.