Self-Organization in Biological Systems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Self-Organization in Biological Systems PDF full book. Access full book title Self-Organization in Biological Systems by Scott Camazine. Download full books in PDF and EPUB format.

Self-Organization in Biological Systems

Self-Organization in Biological Systems PDF Author: Scott Camazine
Publisher: Princeton University Press
ISBN: 0691212929
Category : Science
Languages : en
Pages :

Book Description
The synchronized flashing of fireflies at night. The spiraling patterns of an aggregating slime mold. The anastomosing network of army-ant trails. The coordinated movements of a school of fish. Researchers are finding in such patterns--phenomena that have fascinated naturalists for centuries--a fertile new approach to understanding biological systems: the study of self-organization. This book, a primer on self-organization in biological systems for students and other enthusiasts, introduces readers to the basic concepts and tools for studying self-organization and then examines numerous examples of self-organization in the natural world. Self-organization refers to diverse pattern formation processes in the physical and biological world, from sand grains assembling into rippled dunes to cells combining to create highly structured tissues to individual insects working to create sophisticated societies. What these diverse systems hold in common is the proximate means by which they acquire order and structure. In self-organizing systems, pattern at the global level emerges solely from interactions among lower-level components. Remarkably, even very complex structures result from the iteration of surprisingly simple behaviors performed by individuals relying on only local information. This striking conclusion suggests important lines of inquiry: To what degree is environmental rather than individual complexity responsible for group complexity? To what extent have widely differing organisms adopted similar, convergent strategies of pattern formation? How, specifically, has natural selection determined the rules governing interactions within biological systems? Broad in scope, thorough yet accessible, this book is a self-contained introduction to self-organization and complexity in biology--a field of study at the forefront of life sciences research.

Self-Organization in Biological Systems

Self-Organization in Biological Systems PDF Author: Scott Camazine
Publisher: Princeton University Press
ISBN: 0691212929
Category : Science
Languages : en
Pages :

Book Description
The synchronized flashing of fireflies at night. The spiraling patterns of an aggregating slime mold. The anastomosing network of army-ant trails. The coordinated movements of a school of fish. Researchers are finding in such patterns--phenomena that have fascinated naturalists for centuries--a fertile new approach to understanding biological systems: the study of self-organization. This book, a primer on self-organization in biological systems for students and other enthusiasts, introduces readers to the basic concepts and tools for studying self-organization and then examines numerous examples of self-organization in the natural world. Self-organization refers to diverse pattern formation processes in the physical and biological world, from sand grains assembling into rippled dunes to cells combining to create highly structured tissues to individual insects working to create sophisticated societies. What these diverse systems hold in common is the proximate means by which they acquire order and structure. In self-organizing systems, pattern at the global level emerges solely from interactions among lower-level components. Remarkably, even very complex structures result from the iteration of surprisingly simple behaviors performed by individuals relying on only local information. This striking conclusion suggests important lines of inquiry: To what degree is environmental rather than individual complexity responsible for group complexity? To what extent have widely differing organisms adopted similar, convergent strategies of pattern formation? How, specifically, has natural selection determined the rules governing interactions within biological systems? Broad in scope, thorough yet accessible, this book is a self-contained introduction to self-organization and complexity in biology--a field of study at the forefront of life sciences research.

Self-Organized Biological Dynamics and Nonlinear Control

Self-Organized Biological Dynamics and Nonlinear Control PDF Author: Jan Walleczek
Publisher: Cambridge University Press
ISBN: 1139427598
Category : Science
Languages : en
Pages : 444

Book Description
The growing impact of nonlinear science on biology and medicine is fundamentally changing our view of living organisms and disease processes. This book introduces the application to biomedicine of a broad range of interdisciplinary concepts from nonlinear dynamics, such as self-organization, complexity, coherence, stochastic resonance, fractals and chaos. It comprises 18 chapters written by leading figures in the field and covers experimental and theoretical research, as well as the emerging technological possibilities such as nonlinear control techniques for treating pathological biodynamics, including heart arrhythmias and epilepsy. This book will attract the interest of professionals and students from a wide range of disciplines, including physicists, chemists, biologists, sensory physiologists and medical researchers such as cardiologists, neurologists and biomedical engineers.

Self-Organized Criticality

Self-Organized Criticality PDF Author: Henrik Jeldtoft Jensen
Publisher: Cambridge University Press
ISBN: 9780521483711
Category : Philosophy
Languages : en
Pages : 172

Book Description
A clear and concise introduction to this new, cross-disciplinary field.

Self-organization in Biological Systems

Self-organization in Biological Systems PDF Author: Scott Camazine
Publisher: Princeton University Press
ISBN: 9780691116242
Category : Art
Languages : en
Pages : 558

Book Description
Biological structures built through mechanisms involving self-organization are examined in this text. Examples of such structures are termite mounds, which provide their inhabitants with a secure & stable environment. The text looks at why & how self-organization occurs in nature.

Molecular Mechanisms of Autonomy in Biological Systems

Molecular Mechanisms of Autonomy in Biological Systems PDF Author: Tara Karimi
Publisher: Springer
ISBN: 3319918249
Category : Science
Languages : en
Pages : 134

Book Description
This book presents a novel molecular description for understanding the regulatory mechanisms behind the autonomy and self-organization in biological systems. Chapters focus on defining and explaining the regulatory molecular mechanisms behind different aspects of autonomy and self-organization in the sense of autonomous coding, data processing, structure (mass) formation and energy production in a biological system. Subsequent chapters discuss the cross-talk among mechanisms of energy, and mass and information, transformation in biological systems. Other chapters focus on applications regarding therapeutic approaches in regenerative medicine. Molecular Mechanisms of Autonomy in Biological Systems is an indispensable resource for scientists and researchers in regenerative medicine, stem cell biology, molecular biology, tissue engineering, developmental biology, biochemistry, biophysics, bioinformatics, as well as big data sciences, complexity and soft computing.

The Origins of Order

The Origins of Order PDF Author: Stuart A. Kauffman
Publisher: Oxford University Press
ISBN: 9780199826674
Category : Science
Languages : en
Pages : 734

Book Description
Stuart Kauffman here presents a brilliant new paradigm for evolutionary biology, one that extends the basic concepts of Darwinian evolution to accommodate recent findings and perspectives from the fields of biology, physics, chemistry and mathematics. The book drives to the heart of the exciting debate on the origins of life and maintenance of order in complex biological systems. It focuses on the concept of self-organization: the spontaneous emergence of order that is widely observed throughout nature Kauffman argues that self-organization plays an important role in the Darwinian process of natural selection. Yet until now no systematic effort has been made to incorporate the concept of self-organization into evolutionary theory. The construction requirements which permit complex systems to adapt are poorly understood, as is the extent to which selection itself can yield systems able to adapt more successfully. This book explores these themes. It shows how complex systems, contrary to expectations, can spontaneously exhibit stunning degrees of order, and how this order, in turn, is essential for understanding the emergence and development of life on Earth. Topics include the new biotechnology of applied molecular evolution, with its important implications for developing new drugs and vaccines; the balance between order and chaos observed in many naturally occurring systems; new insights concerning the predictive power of statistical mechanics in biology; and other major issues. Indeed, the approaches investigated here may prove to be the new center around which biological science itself will evolve. The work is written for all those interested in the cutting edge of research in the life sciences.

Self-Organizing Systems

Self-Organizing Systems PDF Author: F.Eugene Yates
Publisher: Springer Science & Business Media
ISBN: 1461308836
Category : Science
Languages : en
Pages : 658

Book Description
Technological systems become organized by commands from outside, as when human intentions lead to the building of structures or machines. But many nat ural systems become structured by their own internal processes: these are the self organizing systems, and the emergence of order within them is a complex phe nomenon that intrigues scientists from all disciplines. Unfortunately, complexity is ill-defined. Global explanatory constructs, such as cybernetics or general sys tems theory, which were intended to cope with complexity, produced instead a grandiosity that has now, mercifully, run its course and died. Most of us have become wary of proposals for an "integrated, systems approach" to complex matters; yet we must come to grips with complexity some how. Now is a good time to reexamine complex systems to determine whether or not various scientific specialties can discover common principles or properties in them. If they do, then a fresh, multidisciplinary attack on the difficulties would be a valid scientific task. Believing that complexity is a proper scientific issue, and that self-organizing systems are the foremost example, R. Tomovic, Z. Damjanovic, and I arranged a conference (August 26-September 1, 1979) in Dubrovnik, Yugoslavia, to address self-organizing systems. We invited 30 participants from seven countries. Included were biologists, geologists, physicists, chemists, mathematicians, bio physicists, and control engineers. Participants were asked not to bring manu scripts, but, rather, to present positions on an assigned topic. Any writing would be done after the conference, when the writers could benefit from their experi ences there.

Self-organized Complexity in the Physical, Biological, and Social Sciences

Self-organized Complexity in the Physical, Biological, and Social Sciences PDF Author: Donald Lawson Turcotte
Publisher: National Academies Press
ISBN: 0309082854
Category : Science
Languages : en
Pages : 385

Book Description


Self-Organizing Robots

Self-Organizing Robots PDF Author: Satoshi Murata
Publisher: Springer Science & Business Media
ISBN: 4431540547
Category : Technology & Engineering
Languages : en
Pages : 263

Book Description
It is man’s ongoing hope that a machine could somehow adapt to its environment by reorganizing itself. This is what the notion of self-organizing robots is based on. The theme of this book is to examine the feasibility of creating such robots within the limitations of current mechanical engineering. The topics comprise the following aspects of such a pursuit: the philosophy of design of self-organizing mechanical systems; self-organization in biological systems; the history of self-organizing mechanical systems; a case study of a self-assembling/self-repairing system as an autonomous distributed system; a self-organizing robot that can create its own shape and robotic motion; implementation and instrumentation of self-organizing robots; and the future of self-organizing robots. All topics are illustrated with many up-to-date examples, including those from the authors’ own work. The book does not require advanced knowledge of mathematics to be understood, and will be of great benefit to students in the robotics discipline, including in the areas of mechanics, control, electronics, and computer science. It is also an important source for researchers who wish to investigate the field of robotics or who have an interest in the application of self-organizing phenomena.

Dynamic Patterns

Dynamic Patterns PDF Author: J. A. Scott Kelso
Publisher: MIT Press
ISBN: 9780262611312
Category : Behavior
Languages : en
Pages : 368

Book Description
foreword by Hermann Haken For the past twenty years Scott Kelso's research has focused on extending the physical concepts of self- organization and the mathematical tools of nonlinear dynamics to understand how human beings (and human brains) perceive, intend, learn, control, and coordinate complex behaviors. In this book Kelso proposes a new, general framework within which to connect brain, mind, and behavior.Kelso's prescription for mental life breaks dramatically with the classical computational approach that is still the operative framework for many newer psychological and neurophysiological studies. His core thesis is that the creation and evolution of patterned behavior at all levels--from neurons to mind--is governed by the generic processes of self-organization. Both human brain and behavior are shown to exhibit features of pattern-forming dynamical systems, including multistability, abrupt phase transitions, crises, and intermittency. Dynamic Patterns brings together different aspects of this approach to the study of human behavior, using simple experimental examples and illustrations to convey essential concepts, strategies, and methods, with a minimum of mathematics. Kelso begins with a general account of dynamic pattern formation. He then takes up behavior, focusing initially on identifying pattern-forming instabilities in human sensorimotor coordination. Moving back and forth between theory and experiment, he establishes the notion that the same pattern-forming mechanisms apply regardless of the component parts involved (parts of the body, parts of the nervous system, parts of society) and the medium through which the parts are coupled. Finally, employing the latest techniques to observe spatiotemporal patterns of brain activity, Kelso shows that the human brain is fundamentally a pattern forming dynamical system, poised on the brink of instability. Self-organization thus underlies the cooperative action of neurons that produces human behavior in all its forms.