Stage-structured Demography in Stochastic Environments PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Stage-structured Demography in Stochastic Environments PDF full book. Access full book title Stage-structured Demography in Stochastic Environments by Raziel Joseph Davison. Download full books in PDF and EPUB format.

Stage-structured Demography in Stochastic Environments

Stage-structured Demography in Stochastic Environments PDF Author: Raziel Joseph Davison
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 137

Book Description
Populations living in natural environments experience fluctuations in environmental conditions that drive variability in demographic rates. This dissertation develops new and existing mathematical methods for studying environmental stochasticity and uses these tools to investigate the role of environmental stochasticity in driving observed population dynamics and plant life history evolution. In the first two chapters I develop new approaches to a classic method in population biology, the life table response experiment (LTRE). Whereas existing methods used time-averaged demographic rates and deterministic sensitivities to decompose observed differences in population growth rates, this new method allows estimation of the contributions to those differences made by variances in demographic rates as well as by mean rate values. I use this stochastic LTRE to show how differential variability in the vital rates of Anthyllis vulneraria (kidney vetch) contribute to differences in the population growth rates of nine populations growing in southwest Belgium; we also show how the effects of demographic rate variability depend on soil depth, where the greater moisture retention of deeper soils buffers populations against the otherwise negative effects of demographic variability. The second chapter provides a different approach to LTRE that uses an iterated two-factor decomposition of the small noise approximation of the stochastic population growth rate to quantify contributions to that growth rate made by: (i) mean vital rates, (ii) temporal variability in vital rates, (iii) elasticities of the population growth rate to individual vital rates, and (iv) correlations between vital rates across the study period. Contributions of elasticities tell us about differences in local selection pressures acting on distinct populations and contributions of correlations tell us about differences in the phenotypic tradeoffs associated with vital rates. I use this new method to show how these differences drive dynamics in two species: Anthyllis vulneraria (the same populations studied in the first chapter) and Cypripedium calceolus (lady's slipper orchid). In Anthyllis vulneraria, variability in large adult fertility and seedling survival made the largest contributions; there were also effects of differences in elasticities of large adult fertility and survival, as well as differences in the correlations between rapid growth and survival in seedlings (a survival cost of rapid early development), between large adult fertility and survival (a survival cost of reproduction) and between large adult fertility and seedling survival. In Cypripedium calceolus, population growth rates were driven most by differences in the elasticities to the probabilities of adult stasis vs. entering dormancy, as well as by differences in the variability and tradeoffs associated with adult dormancy; correlation played a role through differences in the survival payoff of dormancy vs. the complimentary fertility cost of dormancy in terms of lost opportunity for reproduction. The third and final chapter investigates the role of fire disturbance in driving the life histories and population-level dynamics of five woody plant species growing in the Brazilian cerrado, a savannah-forest mosaic in which woody vegetation cover is primarily mediated by fire disturbance. This study presents a set of diagnostics that use demographic responses to recurring disturbance to categorize species along a continuum of adaptation: on one end we find 'resistant' species that must weather disturbance in order to attain large sizes that are buffered against fire-induced mortality; on the other end we find 'resilient' species that are relatively indifferent to disturbance and harness transient opportunities afforded by early post-fire successional habitats in order to take advantage of increased nutrient availability and reduced competition. Each of these chapters uses stochastic demographic analysis to extend theory describing the dynamics of populations in variable environments; together, these studies present a variegated perspective on the role of environmental stochasticity that provides new methods and novel perspectives that should be useful in the study of population biology and life history evolution.

Stage-structured Demography in Stochastic Environments

Stage-structured Demography in Stochastic Environments PDF Author: Raziel Joseph Davison
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 137

Book Description
Populations living in natural environments experience fluctuations in environmental conditions that drive variability in demographic rates. This dissertation develops new and existing mathematical methods for studying environmental stochasticity and uses these tools to investigate the role of environmental stochasticity in driving observed population dynamics and plant life history evolution. In the first two chapters I develop new approaches to a classic method in population biology, the life table response experiment (LTRE). Whereas existing methods used time-averaged demographic rates and deterministic sensitivities to decompose observed differences in population growth rates, this new method allows estimation of the contributions to those differences made by variances in demographic rates as well as by mean rate values. I use this stochastic LTRE to show how differential variability in the vital rates of Anthyllis vulneraria (kidney vetch) contribute to differences in the population growth rates of nine populations growing in southwest Belgium; we also show how the effects of demographic rate variability depend on soil depth, where the greater moisture retention of deeper soils buffers populations against the otherwise negative effects of demographic variability. The second chapter provides a different approach to LTRE that uses an iterated two-factor decomposition of the small noise approximation of the stochastic population growth rate to quantify contributions to that growth rate made by: (i) mean vital rates, (ii) temporal variability in vital rates, (iii) elasticities of the population growth rate to individual vital rates, and (iv) correlations between vital rates across the study period. Contributions of elasticities tell us about differences in local selection pressures acting on distinct populations and contributions of correlations tell us about differences in the phenotypic tradeoffs associated with vital rates. I use this new method to show how these differences drive dynamics in two species: Anthyllis vulneraria (the same populations studied in the first chapter) and Cypripedium calceolus (lady's slipper orchid). In Anthyllis vulneraria, variability in large adult fertility and seedling survival made the largest contributions; there were also effects of differences in elasticities of large adult fertility and survival, as well as differences in the correlations between rapid growth and survival in seedlings (a survival cost of rapid early development), between large adult fertility and survival (a survival cost of reproduction) and between large adult fertility and seedling survival. In Cypripedium calceolus, population growth rates were driven most by differences in the elasticities to the probabilities of adult stasis vs. entering dormancy, as well as by differences in the variability and tradeoffs associated with adult dormancy; correlation played a role through differences in the survival payoff of dormancy vs. the complimentary fertility cost of dormancy in terms of lost opportunity for reproduction. The third and final chapter investigates the role of fire disturbance in driving the life histories and population-level dynamics of five woody plant species growing in the Brazilian cerrado, a savannah-forest mosaic in which woody vegetation cover is primarily mediated by fire disturbance. This study presents a set of diagnostics that use demographic responses to recurring disturbance to categorize species along a continuum of adaptation: on one end we find 'resistant' species that must weather disturbance in order to attain large sizes that are buffered against fire-induced mortality; on the other end we find 'resilient' species that are relatively indifferent to disturbance and harness transient opportunities afforded by early post-fire successional habitats in order to take advantage of increased nutrient availability and reduced competition. Each of these chapters uses stochastic demographic analysis to extend theory describing the dynamics of populations in variable environments; together, these studies present a variegated perspective on the role of environmental stochasticity that provides new methods and novel perspectives that should be useful in the study of population biology and life history evolution.

Sensitivity Analysis: Matrix Methods in Demography and Ecology

Sensitivity Analysis: Matrix Methods in Demography and Ecology PDF Author: Hal Caswell
Publisher: Springer
ISBN: 3030105342
Category : Social Science
Languages : en
Pages : 308

Book Description
This open access book shows how to use sensitivity analysis in demography. It presents new methods for individuals, cohorts, and populations, with applications to humans, other animals, and plants. The analyses are based on matrix formulations of age-classified, stage-classified, and multistate population models. Methods are presented for linear and nonlinear, deterministic and stochastic, and time-invariant and time-varying cases. Readers will discover results on the sensitivity of statistics of longevity, life disparity, occupancy times, the net reproductive rate, and statistics of Markov chain models in demography. They will also see applications of sensitivity analysis to population growth rates, stable population structures, reproductive value, equilibria under immigration and nonlinearity, and population cycles. Individual stochasticity is a theme throughout, with a focus that goes beyond expected values to include variances in demographic outcomes. The calculations are easily and accurately implemented in matrix-oriented programming languages such as Matlab or R. Sensitivity analysis will help readers create models to predict the effect of future changes, to evaluate policy effects, and to identify possible evolutionary responses to the environment. Complete with many examples of the application, the book will be of interest to researchers and graduate students in human demography and population biology. The material will also appeal to those in mathematical biology and applied mathematics.

Stochastic Population Dynamics in Ecology and Conservation

Stochastic Population Dynamics in Ecology and Conservation PDF Author: Russell Lande
Publisher: OUP Oxford
ISBN: 9780198525257
Category : Mathematics
Languages : en
Pages : 698

Book Description
1. Demographic and environmental stochasticity -- 2. Extinction dynamics -- 3. Age structure -- 4. Spatial structure -- 5. Population viability analysis -- 6. Sustainable harvesting -- 7. Species diversity -- 8. Community dynamics.

Structured-Population Models in Marine, Terrestrial, and Freshwater Systems

Structured-Population Models in Marine, Terrestrial, and Freshwater Systems PDF Author: Shripad Tuljapurkar
Publisher: Springer Science & Business Media
ISBN: 9780412072710
Category : Mathematics
Languages : en
Pages : 660

Book Description
Providing many examples of how models can be implemented and interpreted, this book describes the biology of the life cycle and follows the transitions of individuals through stages in the life cycle. The focus is on models as tools.

Conservation Biology

Conservation Biology PDF Author: Peggy L. Fiedler
Publisher: Springer Science & Business Media
ISBN: 1468464264
Category : Nature
Languages : en
Pages : 523

Book Description
• • • John Harper • • • Nature conservation has changed from an idealistic philosophy to a serious technology. Ecology, the science that underpins the technol ogy of conservation, is still too immature to provide all the wisdom that it must. It is arguable that the desire to conserve nature will in itself force the discipline of ecology to identify fundamental prob lems in its scientific goals and methods. In return, ecologists may be able to offer some insights that make conservation more practicable (Harper 1987). The idea that nature (species or communities) is worth preserv ing rests on several fundamental arguments, particularly the argu ment of nostalgia and the argument of human benefit and need. Nostalgia, of course, is a powerful emotion. With some notable ex ceptions, there is usually a feeling of dismay at a change in the sta tus quo, whether it be the loss of a place in the country for walking or rambling, the loss of a painting or architectural monument, or that one will never again have the chance to see a particular species of bird or plant.

Optimal Control of Age-structured Populations in Economy, Demography, and the Environment

Optimal Control of Age-structured Populations in Economy, Demography, and the Environment PDF Author: Raouf Boucekkine
Publisher: Routledge
ISBN: 1136920935
Category : Business & Economics
Languages : en
Pages : 321

Book Description
This book covers a wide range of topics within mathematical modelling and the optimization of economic, demographic, technological and environmental phenomena. Each chapter is written by experts in their field and represents new advances in modelling theory and practice. These essays are exemplary of the fruitful interaction between theory and practice when exploring global and local changes. The unifying theme of the book is the use of mathematical models and optimization methods to describe age-structured populations in economy, demography, technological change, and the environment. Emphasis is placed on deterministic dynamic models that take age or size structures, delay effects, and non-standard decision variables into account. In addition, the contributions deal with the age structure of assets, resources, and populations under study. Interdisciplinary modelling has enormous potential for discovering new insights in global and regional development. Optimal Control of Age-structured Populations in Economy, Demography, and the Environment is a rich and excellent source of information on state-of-the-art modelling expertise and references. The book provides the necessary mathematical background for readers from different areas, such as applied sciences, management sciences and operations research, which helps guide the development of practical models. As well as this the book also surveys the current practice in applied modelling and looks at new research areas for a general mathematical audience. This book will be of interest primarily to researchers, postgraduate students, as well as a wider scientific community, including those focussing on the subjects of applied mathematics, environmental sciences, economics, demography, management, and operations research.

Demographic Methods across the Tree of Life

Demographic Methods across the Tree of Life PDF Author: Roberto Salguero-Gomez
Publisher: Oxford University Press
ISBN: 019257549X
Category : Science
Languages : en
Pages : 416

Book Description
Demography is everywhere in our lives: from birth to death. Indeed, the universal currencies of survival, development, reproduction, and recruitment shape the performance of all species, from microbes to humans. The number of techniques for demographic data acquisition and analyses across the entire tree of life (microbes, fungi, plants, and animals) has drastically increased in recent decades. These developments have been partially facilitated by the advent of technologies such as GIS and drones, as well as analytical methods including Bayesian statistics and high-throughput molecular analyses. However, despite the universality of demography and the significant research potential that could emerge from unifying: (i) questions across taxa, (ii) data collection protocols, and (iii) analytical tools, demographic methods to date have remained taxonomically siloed and methodologically disintegrated. This is the first book to attempt a truly unified approach to demography and population ecology in order to address a wide range of questions in ecology, evolution, and conservation biology across the entire spectrum of life. This novel book provides the reader with the fundamentals of data collection, model construction, analyses, and interpretation across a wide repertoire of demographic techniques and protocols. It introduces the novice demographer to a broad range of demographic methods, including abundance-based models, life tables, matrix population models, integral projection models, integrated population models, individual based models, and more. Through the careful integration of data collection methods, analytical approaches, and applications, clearly guided throughout with fully reproducible R scripts, the book provides an up-to-date and authoritative overview of the most popular and effective demographic tools. Demographic Methods across the Tree of Life is aimed at graduate students and professional researchers in the fields of demography, ecology, animal behaviour, genetics, evolutionary biology, mathematical biology, and wildlife management.

Biodemography

Biodemography PDF Author: James R. Carey
Publisher: Princeton University Press
ISBN: 0691129002
Category : Science
Languages : en
Pages : 476

Book Description
An authoritative overview of the concepts and applications of biological demography This book provides a comprehensive introduction to biodemography, an exciting interdisciplinary field that unites the natural science of biology with the social science of human demography. Biodemography is an essential resource for demographers, epidemiologists, gerontologists, and health professionals as well as ecologists, population biologists, entomologists, and conservation biologists. This accessible and innovative book is also ideal for the classroom. James Carey and Deborah Roach cover everything from baseline demographic concepts to biodemographic applications, and present models and equations in discrete rather than continuous form to enhance mathematical accessibility. They use a wealth of real-world examples that draw from data sets on both human and nonhuman species and offer an interdisciplinary approach to demography like no other, with topics ranging from kinship theory and family demography to reliability engineering, tort law, and demographic disasters such as the Titanic and the destruction of Napoleon's Grande Armée. Provides the first synthesis of demography and biology Covers baseline demographic models and concepts such as Lexis diagrams, mortality, fecundity, and population theory Features in-depth discussions of biodemographic applications like harvesting theory and mark-recapture Draws from data sets on species ranging from fruit flies and plants to elephants and humans Uses a uniquely interdisciplinary approach to demography, bringing together a diverse range of concepts, models, and applications Includes informative "biodemographic shorts," appendixes on data visualization and management, and more than 150 illustrations of models and equations

Population Dynamics Based on Individual Stochasticity

Population Dynamics Based on Individual Stochasticity PDF Author: Ryo Oizumi
Publisher: Springer Nature
ISBN: 9811935483
Category : Social Science
Languages : en
Pages : 107

Book Description
This book demonstrates that population structure and dynamics can be reconstructed by stochastic analysis. Population projection is usually based on age-structured population models. These models consist of age-dependent fertility and mortality, whereas birth and death processes generally arise from states of individuals. For example, a number of seeds are proportional to tree size, and amount of income and savings are the basis of decision making for birth behavior in human beings. Thus, even though individuals belong to an identical cohort, they have different fertility and mortality. To treat this kind of individual heterogeneity, stochastic state transitions are reasonable rather than the deterministic states. This book extends deterministic systems to stochastic systems specifically, constructing a state transition model represented by stochastic differential equations. The diffusion process generated by stochastic differential equations provides statistics determining population dynamics, i.e., heterogeneity is incorporated in population dynamics as its statistics. Applying this perspective to demography and evolutionary biology, we can consider the role of heterogeneity in life history or evolution. These concepts are provided to readers with explanations of stochastic analysis.

Conservation of Wildlife Populations

Conservation of Wildlife Populations PDF Author: L. Scott Mills
Publisher: John Wiley & Sons
ISBN: 1118406672
Category : Science
Languages : en
Pages : 535

Book Description
Population ecology has matured to a sophisticated science with astonishing potential for contributing solutions to wildlife conservation and management challenges. And yet, much of the applied power of wildlife population ecology remains untapped because its broad sweep across disparate subfields has been isolated in specialized texts. In this book, L. Scott Mills covers the full spectrum of applied wildlife population ecology, including genomic tools for non-invasive genetic sampling, predation, population projections, climate change and invasive species, harvest modeling, viability analysis, focal species concepts, and analyses of connectivity in fragmented landscapes. With a readable style, analytical rigor, and hundreds of examples drawn from around the world, Conservation of Wildlife Populations (2nd ed) provides the conceptual basis for applying population ecology to wildlife conservation decision-making. Although targeting primarily undergraduates and beginning graduate students with some basic training in basic ecology and statistics (in majors that could include wildlife biology, conservation biology, ecology, environmental studies, and biology), the book will also be useful for practitioners in the field who want to find - in one place and with plenty of applied examples - the latest advances in the genetic and demographic aspects of population ecology. Additional resources for this book can be found at: www.wiley.com/go/mills/wildlifepopulations.