Adaptive Diversification (MPB-48) PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Adaptive Diversification (MPB-48) PDF full book. Access full book title Adaptive Diversification (MPB-48) by Michael Doebeli. Download full books in PDF and EPUB format.

Adaptive Diversification (MPB-48)

Adaptive Diversification (MPB-48) PDF Author: Michael Doebeli
Publisher: Princeton University Press
ISBN: 0691128944
Category : Science
Languages : en
Pages : 345

Book Description
"Adaptive biological diversification occurs when frequency-dependent selection generates advantages for rare phenotypes and induces a split of an ancestral lineage into multiple descendant lineages. Using adaptive dynamics theory, individual-based simulations, and partial differential equation models, this book illustrates that adaptive diversification due to frequency-dependent ecological interaction is a theoretically ubiquitous phenomenon"--Provided by publisher.

Adaptive Diversification (MPB-48)

Adaptive Diversification (MPB-48) PDF Author: Michael Doebeli
Publisher: Princeton University Press
ISBN: 0691128944
Category : Science
Languages : en
Pages : 345

Book Description
"Adaptive biological diversification occurs when frequency-dependent selection generates advantages for rare phenotypes and induces a split of an ancestral lineage into multiple descendant lineages. Using adaptive dynamics theory, individual-based simulations, and partial differential equation models, this book illustrates that adaptive diversification due to frequency-dependent ecological interaction is a theoretically ubiquitous phenomenon"--Provided by publisher.

Adaptive Diversification (MPB-48)

Adaptive Diversification (MPB-48) PDF Author: Michael Doebeli
Publisher: Princeton University Press
ISBN: 1400838932
Category : Science
Languages : en
Pages : 346

Book Description
Understanding the mechanisms driving biological diversity remains a central problem in ecology and evolutionary biology. Traditional explanations assume that differences in selection pressures lead to different adaptations in geographically separated locations. This book takes a different approach and explores adaptive diversification--diversification rooted in ecological interactions and frequency-dependent selection. In any ecosystem, birth and death rates of individuals are affected by interactions with other individuals. What is an advantageous phenotype therefore depends on the phenotype of other individuals, and it may often be best to be ecologically different from the majority phenotype. Such rare-type advantage is a hallmark of frequency-dependent selection and opens the scope for processes of diversification that require ecological contact rather than geographical isolation. Michael Doebeli investigates adaptive diversification using the mathematical framework of adaptive dynamics. Evolutionary branching is a paradigmatic feature of adaptive dynamics that serves as a basic metaphor for adaptive diversification, and Doebeli explores the scope of evolutionary branching in many different ecological scenarios, including models of coevolution, cooperation, and cultural evolution. He also uses alternative modeling approaches. Stochastic, individual-based models are particularly useful for studying adaptive speciation in sexual populations, and partial differential equation models confirm the pervasiveness of adaptive diversification. Showing that frequency-dependent interactions are an important driver of biological diversity, Adaptive Diversification provides a comprehensive theoretical treatment of adaptive diversification.

Applications of Dynamical Systems in Biology and Medicine

Applications of Dynamical Systems in Biology and Medicine PDF Author: Trachette Jackson
Publisher: Springer
ISBN: 1493927825
Category : Mathematics
Languages : en
Pages : 233

Book Description
This volume highlights problems from a range of biological and medical applications that can be interpreted as questions about system behavior or control. Topics include drug resistance in cancer and malaria, biological fluid dynamics, auto-regulation in the kidney, anti-coagulation therapy, evolutionary diversification and photo-transduction. Mathematical techniques used to describe and investigate these biological and medical problems include ordinary, partial and stochastic differentiation equations, hybrid discrete-continuous approaches, as well as 2 and 3D numerical simulation.

Invasion Dynamics

Invasion Dynamics PDF Author: Cang Hui
Publisher: Oxford University Press
ISBN: 0191062529
Category : Science
Languages : en
Pages : 384

Book Description
Humans have moved organisms around the world for centuries but it is only relatively recently that invasion ecology has grown into a mainstream research field. This book examines both the spread and impact dynamics of invasive species, placing the science of invasion biology on a new, more rigorous, theoretical footing, and proposing a concept of adaptive networks as the foundation for future research. Biological invasions are considered not as simple actions of invaders and reactions of invaded ecosystems, but as co-evolving complex adaptive systems with emergent features of network complexity and invasibility. Invasion Dynamics focuses on the ecology of invasive species and their impacts in recipient social-ecological systems. It discusses not only key advances and challenges within the traditional domain of invasion ecology, but introduces approaches, concepts, and insights from many other disciplines such as complexity science, systems science, and ecology more broadly. It will be of great value to invasion biologists analyzing spread and/or impact dynamics as well as other ecologists interested in spread processes or habitat management.

Fitness Landscapes and the Origin of Species (MPB-41)

Fitness Landscapes and the Origin of Species (MPB-41) PDF Author: Sergey Gavrilets
Publisher: Princeton University Press
ISBN: 0691187053
Category : Science
Languages : en
Pages : 497

Book Description
The origin of species has fascinated both biologists and the general public since the publication of Darwin's Origin of Species in 1859. Significant progress in understanding the process was achieved in the "modern synthesis," when Theodosius Dobzhansky, Ernst Mayr, and others reconciled Mendelian genetics with Darwin's natural selection. Although evolutionary biologists have developed significant new theory and data about speciation in the years since the modern synthesis, this book represents the first systematic attempt to summarize and generalize what mathematical models tell us about the dynamics of speciation. Fitness Landscapes and the Origin of Species presents both an overview of the forty years of previous theoretical research and the author's new results. Sergey Gavrilets uses a unified framework based on the notion of fitness landscapes introduced by Sewall Wright in 1932, generalizing this notion to explore the consequences of the huge dimensionality of fitness landscapes that correspond to biological systems. In contrast to previous theoretical work, which was based largely on numerical simulations, Gavrilets develops simple mathematical models that allow for analytical investigation and clear interpretation in biological terms. Covering controversial topics, including sympatric speciation and the effects of sexual conflict on speciation, this book builds for the first time a general, quantitative theory for the origin of species.

Ecological Niches and Geographic Distributions (MPB-49)

Ecological Niches and Geographic Distributions (MPB-49) PDF Author: A. Townsend Peterson
Publisher: Princeton University Press
ISBN: 0691136882
Category : Science
Languages : en
Pages : 330

Book Description
Terminology, conceptual overview, biogeography, modeling.

The Theory of Ecological Communities (MPB-57)

The Theory of Ecological Communities (MPB-57) PDF Author: Mark Vellend
Publisher: Princeton University Press
ISBN: 0691164843
Category : Science
Languages : en
Pages : 246

Book Description
A plethora of different theories, models, and concepts make up the field of community ecology. Amid this vast body of work, is it possible to build one general theory of ecological communities? What other scientific areas might serve as a guiding framework? As it turns out, the core focus of community ecology—understanding patterns of diversity and composition of biological variants across space and time—is shared by evolutionary biology and its very coherent conceptual framework, population genetics theory. The Theory of Ecological Communities takes this as a starting point to pull together community ecology's various perspectives into a more unified whole. Mark Vellend builds a theory of ecological communities based on four overarching processes: selection among species, drift, dispersal, and speciation. These are analogues of the four central processes in population genetics theory—selection within species, drift, gene flow, and mutation—and together they subsume almost all of the many dozens of more specific models built to describe the dynamics of communities of interacting species. The result is a theory that allows the effects of many low-level processes, such as competition, facilitation, predation, disturbance, stress, succession, colonization, and local extinction to be understood as the underpinnings of high-level processes with widely applicable consequences for ecological communities. Reframing the numerous existing ideas in community ecology, The Theory of Ecological Communities provides a new way for thinking about biological composition and diversity.

Time in Ecology

Time in Ecology PDF Author: Eric Post
Publisher: Princeton University Press
ISBN: 0691185492
Category : Science
Languages : en
Pages : 244

Book Description
Ecologists traditionally regard time as part of the background against which ecological interactions play out. In this book, Eric Post argues that time should be treated as a resource used by organisms for growth, maintenance, and offspring production. Post uses insights from phenology—the study of the timing of life-cycle events—to present a theoretical framework of time in ecology that casts long-standing observations in the field in an entirely new light. Combining conceptual models with field data, he demonstrates how phenological advances, delays, and stasis, documented in an array of taxa, can all be viewed as adaptive components of an organism’s strategic use of time. Post shows how the allocation of time by individual organisms to critical life history stages is not only a response to environmental cues but also an important driver of interactions at the population, species, and community levels. To demonstrate the applications of this exciting new conceptual framework, Time in Ecology uses meta-analyses of previous studies as well as Post’s original data on the phenological dynamics of plants, caribou, and muskoxen in Greenland.

Conservation Biology

Conservation Biology PDF Author: Bradley Cardinale
Publisher: Sinauer Associates Is
ISBN: 9781605357140
Category :
Languages : en
Pages : 672

Book Description
This new text combines theory and applied and basic research to explain the connections between conservation biology and ecology, climate change biology, the protection of endangered species, protected area management, environmental economics, and sustainable development. A major themethroughout the book is the active role that scientists, local people, the general public, conservation organizations, and governments can play in protecting biodiversity, even while providing for human needs.

Ocean Ecology

Ocean Ecology PDF Author: J. Emmett Duffy
Publisher: Princeton University Press
ISBN: 0691190534
Category : Science
Languages : en
Pages : 464

Book Description
A comprehensive introduction to ocean ecology and a new way of thinking about ocean life Marine ecology is more interdisciplinary, broader in scope, and more intimately linked to human activities than ever before. Ocean Ecology provides advanced undergraduates, graduate students, and practitioners with an integrated approach to marine ecology that reflects these new scientific realities, and prepares students for the challenges of studying and managing the ocean as a complex adaptive system. This authoritative and accessible textbook advances a framework based on interactions among four major features of marine ecosystems—geomorphology, the abiotic environment, biodiversity, and biogeochemistry—and shows how life is a driver of environmental conditions and dynamics. Ocean Ecology explains the ecological processes that link organismal to ecosystem scales and that shape the major types of ocean ecosystems, historically and in today's Anthropocene world. Provides an integrated new approach to understanding and managing the ocean Shows how biological diversity is the heart of functioning ecosystems Spans genes to earth systems, surface to seafloor, and estuary to ocean gyre Links species composition, trait distribution, and other ecological structures to the functioning of ecosystems Explains how fishing, fossil fuel combustion, industrial fertilizer use, and other human impacts are transforming the Anthropocene ocean An essential textbook for students and an invaluable resource for practitioners