Hierarchical Matrices: Algorithms and Analysis PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Hierarchical Matrices: Algorithms and Analysis PDF full book. Access full book title Hierarchical Matrices: Algorithms and Analysis by Wolfgang Hackbusch. Download full books in PDF and EPUB format.

Hierarchical Matrices: Algorithms and Analysis

Hierarchical Matrices: Algorithms and Analysis PDF Author: Wolfgang Hackbusch
Publisher: Springer
ISBN: 3662473240
Category : Mathematics
Languages : en
Pages : 511

Book Description
This self-contained monograph presents matrix algorithms and their analysis. The new technique enables not only the solution of linear systems but also the approximation of matrix functions, e.g., the matrix exponential. Other applications include the solution of matrix equations, e.g., the Lyapunov or Riccati equation. The required mathematical background can be found in the appendix. The numerical treatment of fully populated large-scale matrices is usually rather costly. However, the technique of hierarchical matrices makes it possible to store matrices and to perform matrix operations approximately with almost linear cost and a controllable degree of approximation error. For important classes of matrices, the computational cost increases only logarithmically with the approximation error. The operations provided include the matrix inversion and LU decomposition. Since large-scale linear algebra problems are standard in scientific computing, the subject of hierarchical matrices is of interest to scientists in computational mathematics, physics, chemistry and engineering.

Hierarchical Matrices: Algorithms and Analysis

Hierarchical Matrices: Algorithms and Analysis PDF Author: Wolfgang Hackbusch
Publisher: Springer
ISBN: 3662473240
Category : Mathematics
Languages : en
Pages : 511

Book Description
This self-contained monograph presents matrix algorithms and their analysis. The new technique enables not only the solution of linear systems but also the approximation of matrix functions, e.g., the matrix exponential. Other applications include the solution of matrix equations, e.g., the Lyapunov or Riccati equation. The required mathematical background can be found in the appendix. The numerical treatment of fully populated large-scale matrices is usually rather costly. However, the technique of hierarchical matrices makes it possible to store matrices and to perform matrix operations approximately with almost linear cost and a controllable degree of approximation error. For important classes of matrices, the computational cost increases only logarithmically with the approximation error. The operations provided include the matrix inversion and LU decomposition. Since large-scale linear algebra problems are standard in scientific computing, the subject of hierarchical matrices is of interest to scientists in computational mathematics, physics, chemistry and engineering.

Hierarchical Matrices

Hierarchical Matrices PDF Author: Mario Bebendorf
Publisher: Springer Science & Business Media
ISBN: 3540771476
Category : Mathematics
Languages : en
Pages : 303

Book Description
Hierarchical matrices are an efficient framework for large-scale fully populated matrices arising, e.g., from the finite element discretization of solution operators of elliptic boundary value problems. In addition to storing such matrices, approximations of the usual matrix operations can be computed with logarithmic-linear complexity, which can be exploited to setup approximate preconditioners in an efficient and convenient way. Besides the algorithmic aspects of hierarchical matrices, the main aim of this book is to present their theoretical background. The book contains the existing approximation theory for elliptic problems including partial differential operators with nonsmooth coefficients. Furthermore, it presents in full detail the adaptive cross approximation method for the efficient treatment of integral operators with non-local kernel functions. The theory is supported by many numerical experiments from real applications.

Supercomputing Frontiers

Supercomputing Frontiers PDF Author: Rio Yokota
Publisher: Springer
ISBN: 3319699539
Category : Computers
Languages : en
Pages : 293

Book Description
It constitutes the refereed proceedings of the 4th Asian Supercomputing Conference, SCFA 2018, held in Singapore in March 2018. Supercomputing Frontiers will be rebranded as Supercomputing Frontiers Asia (SCFA), which serves as the technical programme for SCA18. The technical programme for SCA18 consists of four tracks: Application, Algorithms & Libraries Programming System Software Architecture, Network/Communications & Management Data, Storage & Visualisation The 20 papers presented in this volume were carefully reviewed nd selected from 60 submissions.

Efficient Numerical Methods for Non-local Operators

Efficient Numerical Methods for Non-local Operators PDF Author: Steffen Börm
Publisher: European Mathematical Society
ISBN: 9783037190913
Category : Matrices
Languages : en
Pages : 452

Book Description
Hierarchical matrices present an efficient way of treating dense matrices that arise in the context of integral equations, elliptic partial differential equations, and control theory. While a dense $n\times n$ matrix in standard representation requires $n^2$ units of storage, a hierarchical matrix can approximate the matrix in a compact representation requiring only $O(n k \log n)$ units of storage, where $k$ is a parameter controlling the accuracy. Hierarchical matrices have been successfully applied to approximate matrices arising in the context of boundary integral methods, to construct preconditioners for partial differential equations, to evaluate matrix functions, and to solve matrix equations used in control theory. $\mathcal{H}^2$-matrices offer a refinement of hierarchical matrices: Using a multilevel representation of submatrices, the efficiency can be significantly improved, particularly for large problems. This book gives an introduction to the basic concepts and presents a general framework that can be used to analyze the complexity and accuracy of $\mathcal{H}^2$-matrix techniques. Starting from basic ideas of numerical linear algebra and numerical analysis, the theory is developed in a straightforward and systematic way, accessible to advanced students and researchers in numerical mathematics and scientific computing. Special techniques are required only in isolated sections, e.g., for certain classes of model problems.

System Theory, the Schur Algorithm and Multidimensional Analysis

System Theory, the Schur Algorithm and Multidimensional Analysis PDF Author: Daniel Alpay
Publisher: Springer Science & Business Media
ISBN: 376438137X
Category : Mathematics
Languages : en
Pages : 322

Book Description
This volume contains six peer-refereed articles written on the occasion of the workshop Operator theory, system theory and scattering theory: multidimensional generalizations and related topics, held at the Department of Mathematics of the Ben-Gurion University of the Negev in June, 2005. The book will interest a wide audience of pure and applied mathematicians, electrical engineers and theoretical physicists.

Efficient Numerical Methods for Non-local Operators

Efficient Numerical Methods for Non-local Operators PDF Author: Steffen Börm
Publisher:
ISBN: 9783037195918
Category : Matrices
Languages : en
Pages : 432

Book Description


Nonnegative Matrix Factorization

Nonnegative Matrix Factorization PDF Author: Nicolas Gillis
Publisher: SIAM
ISBN: 1611976413
Category : Mathematics
Languages : en
Pages : 376

Book Description
Nonnegative matrix factorization (NMF) in its modern form has become a standard tool in the analysis of high-dimensional data sets. This book provides a comprehensive and up-to-date account of the most important aspects of the NMF problem and is the first to detail its theoretical aspects, including geometric interpretation, nonnegative rank, complexity, and uniqueness. It explains why understanding these theoretical insights is key to using this computational tool effectively and meaningfully. Nonnegative Matrix Factorization is accessible to a wide audience and is ideal for anyone interested in the workings of NMF. It discusses some new results on the nonnegative rank and the identifiability of NMF and makes available MATLAB codes for readers to run the numerical examples presented in the book. Graduate students starting to work on NMF and researchers interested in better understanding the NMF problem and how they can use it will find this book useful. It can be used in advanced undergraduate and graduate-level courses on numerical linear algebra and on advanced topics in numerical linear algebra and requires only a basic knowledge of linear algebra and optimization.

Computational Science — ICCS 2001

Computational Science — ICCS 2001 PDF Author: Vassil N. Alexandrov
Publisher: Springer
ISBN: 3540455450
Category : Computers
Languages : en
Pages : 1305

Book Description
LNCS volumes 2073 and 2074 contain the proceedings of the International Conference on Computational Science, ICCS 2001, held in San Francisco, California, May 27 -31, 2001. The two volumes consist of more than 230 contributed and invited papers that reflect the aims of the conference to bring together researchers and scientists from mathematics and computer science as basic computing disciplines, researchers from various application areas who are pioneering advanced application of computational methods to sciences such as physics, chemistry, life sciences, and engineering, arts and humanitarian fields, along with software developers and vendors, to discuss problems and solutions in the area, to identify new issues, and to shape future directions for research, as well as to help industrial users apply various advanced computational techniques.

Exploiting Hidden Structure in Matrix Computations: Algorithms and Applications

Exploiting Hidden Structure in Matrix Computations: Algorithms and Applications PDF Author: Michele Benzi
Publisher: Springer
ISBN: 3319498878
Category : Mathematics
Languages : en
Pages : 406

Book Description
Focusing on special matrices and matrices which are in some sense `near’ to structured matrices, this volume covers a broad range of topics of current interest in numerical linear algebra. Exploitation of these less obvious structural properties can be of great importance in the design of efficient numerical methods, for example algorithms for matrices with low-rank block structure, matrices with decay, and structured tensor computations. Applications range from quantum chemistry to queuing theory. Structured matrices arise frequently in applications. Examples include banded and sparse matrices, Toeplitz-type matrices, and matrices with semi-separable or quasi-separable structure, as well as Hamiltonian and symplectic matrices. The associated literature is enormous, and many efficient algorithms have been developed for solving problems involving such matrices. The text arose from a C.I.M.E. course held in Cetraro (Italy) in June 2015 which aimed to present this fast growing field to young researchers, exploiting the expertise of five leading lecturers with different theoretical and application perspectives.

Fast Direct Solvers for Elliptic PDEs

Fast Direct Solvers for Elliptic PDEs PDF Author: Per-Gunnar Martinsson
Publisher: SIAM
ISBN: 1611976049
Category : Mathematics
Languages : en
Pages : 332

Book Description
Fast solvers for elliptic PDEs form a pillar of scientific computing. They enable detailed and accurate simulations of electromagnetic fields, fluid flows, biochemical processes, and much more. This textbook provides an introduction to fast solvers from the point of view of integral equation formulations, which lead to unparalleled accuracy and speed in many applications. The focus is on fast algorithms for handling dense matrices that arise in the discretization of integral operators, such as the fast multipole method and fast direct solvers. While the emphasis is on techniques for dense matrices, the text also describes how similar techniques give rise to linear complexity algorithms for computing the inverse or the LU factorization of a sparse matrix resulting from the direct discretization of an elliptic PDE. This is the first textbook to detail the active field of fast direct solvers, introducing readers to modern linear algebraic techniques for accelerating computations, such as randomized algorithms, interpolative decompositions, and data-sparse hierarchical matrix representations. Written with an emphasis on mathematical intuition rather than theoretical details, it is richly illustrated and provides pseudocode for all key techniques. Fast Direct Solvers for Elliptic PDEs is appropriate for graduate students in applied mathematics and scientific computing, engineers and scientists looking for an accessible introduction to integral equation methods and fast solvers, and researchers in computational mathematics who want to quickly catch up on recent advances in randomized algorithms and techniques for working with data-sparse matrices.