Principles and Techniques in Combinatorics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Principles and Techniques in Combinatorics PDF full book. Access full book title Principles and Techniques in Combinatorics by Chuan-Chong Chen. Download full books in PDF and EPUB format.

Author: Chuan-Chong Chen Publisher: World Scientific ISBN: 9789810211394 Category : Mathematics Languages : en Pages : 314

Book Description
A textbook suitable for undergraduate courses. The materials are presented very explicitly so that students will find it very easy to read. A wide range of examples, about 500 combinatorial problems taken from various mathematical competitions and exercises are also included.

Author: Chuan-Chong Chen Publisher: World Scientific ISBN: 9789810211394 Category : Mathematics Languages : en Pages : 314

Book Description
A textbook suitable for undergraduate courses. The materials are presented very explicitly so that students will find it very easy to read. A wide range of examples, about 500 combinatorial problems taken from various mathematical competitions and exercises are also included.

Author: Lin Simon Mingyan Publisher: World Scientific ISBN: 9813238860 Category : Mathematics Languages : en Pages : 440

Book Description
The solutions to each problem are written from a first principles approach, which would further augment the understanding of the important and recurring concepts in each chapter. Moreover, the solutions are written in a relatively self-contained manner, with very little knowledge of undergraduate mathematics assumed. In that regard, the solutions manual appeals to a wide range of readers, from secondary school and junior college students, undergraduates, to teachers and professors.

Author: Peter Jephson Cameron Publisher: Cambridge University Press ISBN: 9780521457613 Category : Mathematics Languages : en Pages : 372

Book Description
Combinatorics is a subject of increasing importance, owing to its links with computer science, statistics and algebra. This is a textbook aimed at second-year undergraduates to beginning graduates. It stresses common techniques (such as generating functions and recursive construction) which underlie the great variety of subject matter and also stresses the fact that a constructive or algorithmic proof is more valuable than an existence proof. The book is divided into two parts, the second at a higher level and with a wider range than the first. Historical notes are included which give a wider perspective on the subject. More advanced topics are given as projects and there are a number of exercises, some with solutions given.

Author: J. H. van Lint Publisher: Cambridge University Press ISBN: 9780521006019 Category : Mathematics Languages : en Pages : 620

Book Description
This is the second edition of a popular book on combinatorics, a subject dealing with ways of arranging and distributing objects, and which involves ideas from geometry, algebra and analysis. The breadth of the theory is matched by that of its applications, which include topics as diverse as codes, circuit design and algorithm complexity. It has thus become essential for workers in many scientific fields to have some familiarity with the subject. The authors have tried to be as comprehensive as possible, dealing in a unified manner with, for example, graph theory, extremal problems, designs, colorings and codes. The depth and breadth of the coverage make the book a unique guide to the whole of the subject. The book is ideal for courses on combinatorical mathematics at the advanced undergraduate or beginning graduate level. Working mathematicians and scientists will also find it a valuable introduction and reference.

Author: Nicholas Loehr Publisher: CRC Press ISBN: 149878027X Category : Mathematics Languages : en Pages : 979

Book Description
Combinatorics, Second Edition is a well-rounded, general introduction to the subjects of enumerative, bijective, and algebraic combinatorics. The textbook emphasizes bijective proofs, which provide elegant solutions to counting problems by setting up one-to-one correspondences between two sets of combinatorial objects. The author has written the textbook to be accessible to readers without any prior background in abstract algebra or combinatorics. Part I of the second edition develops an array of mathematical tools to solve counting problems: basic counting rules, recursions, inclusion-exclusion techniques, generating functions, bijective proofs, and linear algebraic methods. These tools are used to analyze combinatorial structures such as words, permutations, subsets, functions, graphs, trees, lattice paths, and much more. Part II cover topics in algebraic combinatorics including group actions, permutation statistics, symmetric functions, and tableau combinatorics. This edition provides greater coverage of the use of ordinary and exponential generating functions as a problem-solving tool. Along with two new chapters, several new sections, and improved exposition throughout, the textbook is brimming with many examples and exercises of various levels of difficulty.

Author: Nicholas Loehr Publisher: CRC Press ISBN: 1439848866 Category : Computers Languages : en Pages : 600

Book Description
Bijective proofs are some of the most elegant and powerful techniques in all of mathematics. Suitable for readers without prior background in algebra or combinatorics, Bijective Combinatorics presents a general introduction to enumerative and algebraic combinatorics that emphasizes bijective methods.The text systematically develops the mathematical

Author: Bruce E. Sagan Publisher: American Mathematical Soc. ISBN: 1470460327 Category : Education Languages : en Pages : 304

Book Description
This book is a gentle introduction to the enumerative part of combinatorics suitable for study at the advanced undergraduate or beginning graduate level. In addition to covering all the standard techniques for counting combinatorial objects, the text contains material from the research literature which has never before appeared in print, such as the use of quotient posets to study the Möbius function and characteristic polynomial of a partially ordered set, or the connection between quasisymmetric functions and pattern avoidance. The book assumes minimal background, and a first course in abstract algebra should suffice. The exposition is very reader friendly: keeping a moderate pace, using lots of examples, emphasizing recurring themes, and frankly expressing the delight the author takes in mathematics in general and combinatorics in particular.

Author: Pablo Soberón Publisher: Springer Science & Business Media ISBN: 3034805977 Category : Mathematics Languages : en Pages : 174

Book Description
Every year there is at least one combinatorics problem in each of the major international mathematical olympiads. These problems can only be solved with a very high level of wit and creativity. This book explains all the problem-solving techniques necessary to tackle these problems, with clear examples from recent contests. It also includes a large problem section for each topic, including hints and full solutions so that the reader can practice the material covered in the book. The material will be useful not only to participants in the olympiads and their coaches but also in university courses on combinatorics.