High-Performance Computing for Structural Mechanics and Earthquake/Tsunami Engineering PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download High-Performance Computing for Structural Mechanics and Earthquake/Tsunami Engineering PDF full book. Access full book title High-Performance Computing for Structural Mechanics and Earthquake/Tsunami Engineering by Shinobu Yoshimura. Download full books in PDF and EPUB format.

High-Performance Computing for Structural Mechanics and Earthquake/Tsunami Engineering

High-Performance Computing for Structural Mechanics and Earthquake/Tsunami Engineering PDF Author: Shinobu Yoshimura
Publisher: Springer
ISBN: 3319210483
Category : Science
Languages : en
Pages : 199

Book Description
Huge earthquakes and tsunamis have caused serious damage to important structures such as civil infrastructure elements, buildings and power plants around the globe. To quantitatively evaluate such damage processes and to design effective prevention and mitigation measures, the latest high-performance computational mechanics technologies, which include telascale to petascale computers, can offer powerful tools. The phenomena covered in this book include seismic wave propagation in the crust and soil, seismic response of infrastructure elements such as tunnels considering soil-structure interactions, seismic response of high-rise buildings, seismic response of nuclear power plants, tsunami run-up over coastal towns and tsunami inundation considering fluid-structure interactions. The book provides all necessary information for addressing these phenomena, ranging from the fundamentals of high-performance computing for finite element methods, key algorithms of accurate dynamic structural analysis, fluid flows with free surfaces, and fluid-structure interactions, to practical applications with detailed simulation results. The book will offer essential insights for researchers and engineers working in the field of computational seismic/tsunami engineering.

High-Performance Computing for Structural Mechanics and Earthquake/Tsunami Engineering

High-Performance Computing for Structural Mechanics and Earthquake/Tsunami Engineering PDF Author: Shinobu Yoshimura
Publisher: Springer
ISBN: 3319210483
Category : Science
Languages : en
Pages : 199

Book Description
Huge earthquakes and tsunamis have caused serious damage to important structures such as civil infrastructure elements, buildings and power plants around the globe. To quantitatively evaluate such damage processes and to design effective prevention and mitigation measures, the latest high-performance computational mechanics technologies, which include telascale to petascale computers, can offer powerful tools. The phenomena covered in this book include seismic wave propagation in the crust and soil, seismic response of infrastructure elements such as tunnels considering soil-structure interactions, seismic response of high-rise buildings, seismic response of nuclear power plants, tsunami run-up over coastal towns and tsunami inundation considering fluid-structure interactions. The book provides all necessary information for addressing these phenomena, ranging from the fundamentals of high-performance computing for finite element methods, key algorithms of accurate dynamic structural analysis, fluid flows with free surfaces, and fluid-structure interactions, to practical applications with detailed simulation results. The book will offer essential insights for researchers and engineers working in the field of computational seismic/tsunami engineering.

Computational Structural Dynamics and Earthquake Engineering

Computational Structural Dynamics and Earthquake Engineering PDF Author: Manolis Papadrakakis
Publisher: CRC Press
ISBN: 020388163X
Category : Technology & Engineering
Languages : en
Pages : 672

Book Description
The increasing necessity to solve complex problems in Structural Dynamics and Earthquake Engineering requires the development of new ideas, innovative methods and numerical tools for providing accurate numerical solutions in affordable computing times. This book presents the latest scientific developments in Computational Dynamics, Stochastic Dynam

Integrated Earthquake Simulation

Integrated Earthquake Simulation PDF Author: M. Hori
Publisher: CRC Press
ISBN: 1000615774
Category : Technology & Engineering
Languages : en
Pages : 192

Book Description
Integrated earthquake simulation (IES) is a new method for evaluating earthquake hazards and disasters induced in cities and urban areas. It utilises a sequence of numerical simulations of such aspects as earthquake wave propagation, ground motion amplification, structural seismic response, and mass evacuation. This book covers the basics of numerical analysis methods of solving wave equations, analyzing structural responses, and developing agent models for mass evaluation, which are implemented in IES. IES makes use of Monte-Carlo simulation, which takes account of the effects of uncertainties related to earthquake scenarios and the modeling of structures both above and below ground, and facilitates a better estimate of overall earthquake and disaster hazard. It also presents the recent achievement of enhancing IES with high-performance computing capability that can make use of automated models which employ various numerical analysis methods. Detailed examples of IES for the Tokyo Metropolis Earthquake and the Nankai Trough Earthquake are given, which use large scale analysis models of actual cities and urban areas.

Structural Seismic Design Optimization and Earthquake Engineering: Formulations and Applications

Structural Seismic Design Optimization and Earthquake Engineering: Formulations and Applications PDF Author: Plevris, Vagelis
Publisher: IGI Global
ISBN: 1466616415
Category : Technology & Engineering
Languages : en
Pages : 456

Book Description
Throughout the past few years, there has been extensive research done on structural design in terms of optimization methods or problem formulation. But, much of this attention has been on the linear elastic structural behavior, under static loading condition. Such a focus has left researchers scratching their heads as it has led to vulnerable structural configurations. What researchers have left out of the equation is the element of seismic loading. It is essential for researchers to take this into account in order to develop earthquake resistant real-world structures. Structural Seismic Design Optimization and Earthquake Engineering: Formulations and Applications focuses on the research around earthquake engineering, in particular, the field of implementation of optimization algorithms in earthquake engineering problems. Topics discussed within this book include, but are not limited to, simulation issues for the accurate prediction of the seismic response of structures, design optimization procedures, soft computing applications, and other important advancements in seismic analysis and design where optimization algorithms can be implemented. Readers will discover that this book provides relevant theoretical frameworks in order to enhance their learning on earthquake engineering as it deals with the latest research findings and their practical implementations, as well as new formulations and solutions.

Integrated Earthquake Simulation

Integrated Earthquake Simulation PDF Author: M. Hori
Publisher: CRC Press
ISBN: 1000615723
Category : Technology & Engineering
Languages : en
Pages : 189

Book Description
Integrated earthquake simulation (IES) is a new method for evaluating earthquake hazards and disasters induced in cities and urban areas. It utilises a sequence of numerical simulations of such aspects as earthquake wave propagation, ground motion amplification, structural seismic response, and mass evacuation. This book covers the basics of numerical analysis methods of solving wave equations, analyzing structural responses, and developing agent models for mass evaluation, which are implemented in IES. IES makes use of Monte-Carlo simulation, which takes account of the effects of uncertainties related to earthquake scenarios and the modeling of structures both above and below ground, and facilitates a better estimate of overall earthquake and disaster hazard. It also presents the recent achievement of enhancing IES with high-performance computing capability that can make use of automated models which employ various numerical analysis methods. Detailed examples of IES for the Tokyo Metropolis Earthquake and the Nankai Trough Earthquake are given, which use large scale analysis models of actual cities and urban areas.

Grand Challenges in Earthquake Engineering Research

Grand Challenges in Earthquake Engineering Research PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309214521
Category : Science
Languages : en
Pages : 102

Book Description
As geological threats become more imminent, society must make a major commitment to increase the resilience of its communities, infrastructure, and citizens. Recent earthquakes in Japan, New Zealand, Haiti, and Chile provide stark reminders of the devastating impact major earthquakes have on the lives and economic stability of millions of people worldwide. The events in Haiti continue to show that poor planning and governance lead to long-term chaos, while nations like Chile demonstrate steady recovery due to modern earthquake planning and proper construction and mitigation activities. At the request of the National Science Foundation, the National Research Council hosted a two-day workshop to give members of the community an opportunity to identify "Grand Challenges" for earthquake engineering research that are needed to achieve an earthquake resilient society, as well as to describe networks of earthquake engineering experimental capabilities and cyberinfrastructure tools that could continue to address ongoing areas of concern. Grand Challenges in Earthquake Engineering Research: A Community Workshop Report explores the priorities and problems regions face in reducing consequent damage and spurring technological preparedness advances. Over the course of the Grand Challenges in Earthquake Engineering Research workshop, 13 grand challenge problems emerged and were summarized in terms of five overarching themes including: community resilience framework, decision making, simulation, mitigation, and design tools. Participants suggested 14 experimental facilities and cyberinfrastructure tools that would be needed to carry out testing, observations, and simulations, and to analyze the results. The report also reviews progressive steps that have been made in research and development, and considers what factors will accelerate transformative solutions.

Application of High Performance Computing to Earthquake Related Problems

Application of High Performance Computing to Earthquake Related Problems PDF Author: Muneo Hori
Publisher:
ISBN: 9781800614628
Category :
Languages : en
Pages : 0

Book Description
This major reference summarizes the theory, analysis methods, and computational results from supercomputers of various earthquake simulations using supercomputers. It covers simulations in the fields of physical geology, earthquake engineering -- specifically the seismic response of structures -- and the socioeconomic impact of post-earthquake recovery on cities and societies. These simulations provide an effective bird's-eye view of earthquake occurrence, earthquake damage, and recovery from the damage.

Earthquake Disaster Simulation of Civil Infrastructures

Earthquake Disaster Simulation of Civil Infrastructures PDF Author: Xinzheng Lu
Publisher: Springer
ISBN: 9811030871
Category : Technology & Engineering
Languages : en
Pages : 440

Book Description
Based on more than 12 years of systematic investigation on earthquake disaster simulation of civil infrastructures, this book covers the major research outcomes including a number of novel computational models, high performance computing methods and realistic visualization techniques for tall buildings and urban areas, with particular emphasize on collapse prevention and mitigation in extreme earthquakes, earthquake loss evaluation and seismic resilience. Typical engineering applications to several tallest buildings in the world (e.g., the 632 m tall Shanghai Tower and the 528 m tall Z15 Tower) and selected large cities in China (the Beijing Central Business District, Xi'an City, Taiyuan City and Tangshan City) are also introduced to demonstrate the advantages of the proposed computational models and techniques. The high-fidelity computational model developed in this book has proven to be the only feasible option to date for earthquake-induced collapse simulation of supertall buildings that are higher than 500 m. More importantly, the proposed collapse simulation technique has already been successfully used in the design of some real-world supertall buildings, with significant savings of tens of thousands of tons of concrete and steel, whilst achieving a better seismic performance and safety. The proposed novel solution for earthquake disaster simulation of urban areas using nonlinear multiple degree-of-freedom (MDOF) model and time-history analysis delivers several unique advantages: (1) true representation of the characteristic features of individual buildings and ground motions; (2) realistic visualization of earthquake scenarios, particularly dynamic shaking of buildings during earthquakes; (3) detailed prediction of seismic response and losses on each story of every building at any time period. The proposed earthquake disaster simulation technique has been successfully implemented in the seismic performance assessments and earthquake loss predictions of several central cities in China. The outcomes of the simulation as well as the feedback from the end users are encouraging, particularly for the government officials and/or administration department personnel with limited professional knowledge of earthquake engineering. The book offers readers a systematic solution to earthquake disaster simulation of civil infrastructures. The application outcomes demonstrate a promising future of the proposed advanced techniques. The book provides a long-awaited guide for academics and graduate students involving in earthquake engineering research and teaching activities. It can also be used by structural engineers for seismic design of supertall buildings.

Advances in Performance-Based Earthquake Engineering

Advances in Performance-Based Earthquake Engineering PDF Author: Michael N. Fardis
Publisher: Springer Science & Business Media
ISBN: 9789048187461
Category : Technology & Engineering
Languages : en
Pages : 486

Book Description
Performance-based Earthquake Engineering has emerged before the turn of the century as the most important development in the field of Earthquake Engineering during the last three decades. It has since then started penetrating codes and standards on seismic assessment and retrofitting and making headway towards seismic design standards for new structures as well. The US have been a leader in Performance-based Earthquake Engineering, but also Europe is a major contributor. Two Workshops on Performance-based Earthquake Engineering, held in Bled (Slovenia) in 1997 and 2004 are considered as milestones. The ACES Workshop in Corfu (Greece) of July 2009 builds on them, attracting as contributors world-leaders in Performance-based Earthquake Engineering from North America, Europe and the Pacific rim (Japan, New Zealand, Taiwan, China). It covers the entire scope of Performance-based Earthquake Engineering: Ground motions for performance-based earthquake engineering; Methodologies for Performance-based seismic design and retrofitting; Implementation of Performance-based seismic design and retrofitting; and Advanced seismic testing for performance-based earthquake engineering. Audience: This volume will be of interest to scientists and advanced practitioners in structural earthquake engineering, geotechnical earthquake engineering, engineering seismology, and experimental dynamics.

Intelligent Computational Paradigms in Earthquake Engineering

Intelligent Computational Paradigms in Earthquake Engineering PDF Author: Nikos D. Lagaros
Publisher: IGI Global
ISBN: 1599040999
Category : Technology & Engineering
Languages : en
Pages : 463

Book Description
"This book contains contributions that cover a wide spectrum of very important real-world engineering problems, and explores the implementation of neural networks for the representation of structural responses in earthquake engineering. It assesses the efficiency of seismic design procedures and describes the latest findings in intelligent optimal control systems and their applications in structural engineering"--Provided by publisher.