Microcavities PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Microcavities PDF full book. Access full book title Microcavities by Alexey Kavokin. Download full books in PDF and EPUB format.

Microcavities

Microcavities PDF Author: Alexey Kavokin
Publisher: OUP Oxford
ISBN: 0191620734
Category : Science
Languages : en
Pages : 487

Book Description
Rapid development of microfabrication and assembly of nanostructures has opened up many opportunities to miniaturize structures that confine light, producing unusual and extremely interesting optical properties. This book addresses the large variety of optical phenomena taking place in confined solid state structures: microcavities. Realisations include planar and pillar microcavities, whispering gallery modes, and photonic crystals. The microcavities represent a unique laboratory for quantum optics and photonics. They exhibit a number of beautiful effects including lasing, superfluidity, superradiance, entanglement etc. Written by four practitioners strongly involved in experiments and theories of microcavities, it is addressed to any interested reader having a general physical background, but in particular to undergraduate and graduate students at physics faculties.

Microcavities

Microcavities PDF Author: Alexey Kavokin
Publisher: OUP Oxford
ISBN: 0191620734
Category : Science
Languages : en
Pages : 487

Book Description
Rapid development of microfabrication and assembly of nanostructures has opened up many opportunities to miniaturize structures that confine light, producing unusual and extremely interesting optical properties. This book addresses the large variety of optical phenomena taking place in confined solid state structures: microcavities. Realisations include planar and pillar microcavities, whispering gallery modes, and photonic crystals. The microcavities represent a unique laboratory for quantum optics and photonics. They exhibit a number of beautiful effects including lasing, superfluidity, superradiance, entanglement etc. Written by four practitioners strongly involved in experiments and theories of microcavities, it is addressed to any interested reader having a general physical background, but in particular to undergraduate and graduate students at physics faculties.

Optical Processes in Microcavities

Optical Processes in Microcavities PDF Author: Richard Kounai Chang
Publisher: World Scientific
ISBN: 9789810223441
Category : Science
Languages : en
Pages : 456

Book Description
The dielectric microstructures act as ultrahigh Q factors optical cavities, which modify the spontaneous emission rates and alter the spatial distributions of the input and output radiation. The editors have selected leading scientists who have made seminal contributions in different aspects of optical processes in microcavities. Every attempt has been made to unify the underlying physics pertaining to microcavities of various shapes. This book begins with a chapter on the role of microcavity modes with additional chapters on how these microcavity modes affect the spontaneous and stimulated emission rates, enhance nonlinear optical processes, used in cavity-QED and chemical physics experiments, aid in single-molecule detection, influence the design of microdisk semiconductor lasers, and how deformed cavities can be treated with classical chaos theory.

Microcavities and Photonic Bandgaps: Physics and Applications

Microcavities and Photonic Bandgaps: Physics and Applications PDF Author: J.G. Rarity
Publisher: Springer Science & Business Media
ISBN: 9400903138
Category : Science
Languages : en
Pages : 600

Book Description
The control of optical modes in microcavities or in photonic bandgap (PBG) materials is coming of age! Although these ideas could have been developed some time ago, it is only recently that they have emerged, due to advances in both atomic physics and in fabrication techniques, be it on the high-quality dielectric mirrors required for high-finesse Fabry Perot resonators or in semiconductor multilayer deposition methods. Initially the principles of quantum electro-dynamics (QED) were demonstrated in elegant atomic physics experiments. Now solid-state implementations are being investigated, with several subtle differences from the atomic case such as those due to their continuum of electronic states or the near Boson nature of their elementary excitations, the exciton. Research into quantum optics brings us ever newer concepts with potential to improve system performance such as photon squeezing, quantum cryptography, reversible taps, photonic de Broglie waves and quantum computers. The possibility of implementing these ideas with solid-state systems gives us hope that some could indeed find their way to the market, demonstrating the continuing importance of basic research for applications, be it in a somewhat more focused way than in earlier times for funding.

Spontaneous Emission and Laser Oscillation in Microcavities

Spontaneous Emission and Laser Oscillation in Microcavities PDF Author: Hiroyuki Yokoyama
Publisher: CRC Press
ISBN: 0429612265
Category : Science
Languages : en
Pages : 385

Book Description
In spite of the increasing importance of microcavities, device physics or the observable phenomena in optical microcavities such as enhanced or inhibited spontaneous emission and its relation with the laser oscillation has not been systematically well-described-until now. Spontaneous Emission and Laser Oscillation in Microcavities presents the basics of optical microcavities. The volume is divided into ten chapters, each written by respected authorities in their areas. The book surveys several methods describing free space spontaneous emission and discusses changes in the feature due to the presence of a cavity. The effect of dephasing of vacuum fields on spontaneous emission in a microcavity and the effects of atomic broadening on spontaneous emission in an optical microcavity are examined. The book details the splitting in transmission peaks of planar microcavities containing semiconductor quantum wells. A simple but useful way to consider the change in the spontaneous emission rate from the viewpoint of mode density alteration by wavelength-sized cavities is provided. Authors also discuss the spontaneous emission in dielectric planar microcavities. Spontaneous emission in microcavity surface emitting lasers is covered, as are the effects of electron confinement in semiconductor quantum wells, wires, and boxes also given. The volume extends the controlling spontaneous emission phenomenon to laser oscillation. Starting from the Fermi golden rule, the microcavity laser rate equations are derived, and the oscillation characteristics are analyzed. Recent progress in optical microcavity experiments is summarized, and the applicability in massively optical parallel processing systems and demands for the device performance are explored. This volume is extremely useful as a textbook for graduate and postgraduate students and works well as a unique reference for researchers beginning to study in the field.

Microcavities

Microcavities PDF Author: Alexey V. Kavokin
Publisher: Oxford University Press
ISBN: 0191085863
Category : Technology & Engineering
Languages : en
Pages : 608

Book Description
Microcavities are semiconductor, metal, or dielectric structures providing optical confinement in one, two or three dimensions. At the end of the 20th century, microcavities have attracted attention due to the discovery of a strong exciton-light coupling regime allowing for the formation of superposition light-matter quasiparticles: exciton-polaritons. In the following century several remarkable effects have been discovered in microcavities, including the Bose-Einstein condensation of exciton-polaritons, polariton lasing, superfluidity, optical spin Hall and spin Meissner effects, amongst other discoveries. Currently, polariton devices exploiting the bosonic stimulation effects at room temperature are being developed by laboratories across the world. This book addresses the physics of microcavities: from classical to quantum optics, from a Boltzmann gas to a superfluid. It provides the theoretical background needed for understanding the complex phenomena in coupled light-matter systems, and it presents a broad overview of experimental progress in the physics of microcavities.

The Physics of Semiconductor Microcavities

The Physics of Semiconductor Microcavities PDF Author: Benoit Deveaud
Publisher: John Wiley & Sons
ISBN: 9783527405619
Category : Science
Languages : en
Pages : 336

Book Description
Electron and photon confinement in semiconductor nanostructures is one of the most active areas in solid state research. Written by leading experts in solid state physics, this book provides both a comprehensive review as well as a excellent introduction to fundamental and applied aspects of light-matter coupling in microcavities. Topics covered include parametric amplification and polariton liquids, quantum fluid and non-linear dynamical effects and parametric instabilities, polariton squeezing, Bose-Einstein condensation of microcavity polaritons, spin dynamics of exciton-polaritons, polariton correlation produced by parametric scattering, progress in III-nitride distributed Bragg reflectors using AlInN/GaN materials, high efficiency planar MCLEDs, exciton-polaritons and nanoscale cavities in photonic crystals, and MBE growth of high finesse microcavities.

Optical Microcavities

Optical Microcavities PDF Author: Kerry Vahala
Publisher: World Scientific
ISBN: 9814483109
Category : Science
Languages : en
Pages : 516

Book Description
Optical microcavities are structures that enable confinement of light to microscale volumes. The universal importance of these structures has made them indispensable to a wide range of fields. This important book describes the many applications and the related physics, providing both a review and a tutorial of key subjects by leading researchers from each field. The topics include cavity QED and quantum information, nanophotonics and nanostructure interactions, wavelength switching and modulation in optical communications, optical chaos and biosensors. Contents: Optical Resonators and Filters (H A Haus et al.)Microfabricated Optical Cavities and Photonic Crystals (M Lončar & A Scherer)Semiconductor Lasers for Telecommunications (T L Koch)Cavity-Enhanced Single Photons from a Quantum Dot (J Vuèković et al.)Fabrication, Coupling and Nonlinear Optics of Ultra-High-Q Micro-Sphere and Chip-Based Toroid Microcavities (T J Kippenberg et al.)Nonlinear Optical Properties of Semiconductor Quantum Wells inside Microcavities (T Meier et al.)Polymer Microring Resonators (P Rabiei & W H Steier)Atoms in Microcavities: Quantum Electrodynamics, Quantum Statistical Mechanics, and Quantum Information Science (A C Doherty & H Mabuchi)Progress in Asymmetric Resonant Cavities: Using Shape as a Design Parameter in Dielectric Microcavity Lasers (H G L Schwefel et al.) Readership: Upper-level undergraduates, graduate students, academics, researchers and practitioners in the fields of general optics, optical communications, quantum optics, quantum information, bioengineering/biophysics, lasers and photonics. Keywords:Optical;Microcavity;Microresonator;Cavity;Resonator;Nanophotonic;QED;Laser;Sensor;Switch;Strong Coupling;Single Photon;Whispering Gallery;Fabry–Perot;Photonic Crystal

Handbook of Optical Microcavities

Handbook of Optical Microcavities PDF Author: Anthony H. W. Choi
Publisher: CRC Press
ISBN: 9814463248
Category : Technology & Engineering
Languages : en
Pages : 527

Book Description
An optical cavity confines light within its structure and constitutes an integral part of a laser device. Unlike traditional gas lasers, semiconductor lasers are invariably much smaller in dimensions, making optical confinement more critical than ever. In this book, modern methods that control and manipulate light at the micrometer and nanometer scales by using a variety of cavity geometries and demonstrate optical resonance from ultra-violet (UV) to infra-red (IR) bands across multiple material platforms are explored. The book has a comprehensive collection of chapters that cover a wide range of topics pertaining to resonance in optical cavities and are contributed by leading researchers in the field. The topics include theory, design, simulation, fabrication, and characterization of micrometer- and nanometer-scale structures and devices that support cavity resonance via various mechanisms such as Fabry–Pérot, whispering gallery, photonic bandgap, and plasmonic modes. The chapters discuss optical cavities that resonate from UV to IR wavelengths and are based on prominent III-V material systems, including Al, In, and Ga nitrides, ZnO, and GaAs.

Exciton Polaritons in Microcavities

Exciton Polaritons in Microcavities PDF Author: Daniele Sanvitto
Publisher: Springer Science & Business Media
ISBN: 3642241867
Category : Science
Languages : en
Pages : 416

Book Description
In the past decade, there has been a burst of new and fascinating physics associated to the unique properties of two-dimensional exciton polaritons, their recent demonstration of condensation under non-equilibrium conditions and all the related quantum phenomena, which have stimulated extensive research work. This monograph summarizes the current state of the art of research on exciton polaritons in microcavities: their interactions, fast dynamics, spin-dependent phenomena, temporal and spatial coherence, condensation under non-equilibrium conditions, related collective quantum phenomena and most advanced applications. The monograph is written by the most active authors who have strongly contributed to the advances in this area. It is of great interests to both physicists approaching this subject for the first time, as well as a wide audience of experts in other disciplines who want to be updated on this fast moving field.

Ultra-high-q Optical Microcavities

Ultra-high-q Optical Microcavities PDF Author: Yun-feng Xiao
Publisher: World Scientific
ISBN: 981456608X
Category : Science
Languages : en
Pages : 412

Book Description
Confinement and manipulation of photons using microcavities have triggered intense research interest in both basic and applied physics for more than a decade. Prominent examples are whispering gallery microcavities which confine photons by means of continuous total internal reflection along a curved and smooth surface. The long photon lifetime, strong field confinement, and in-plane emission characteristics make them promising candidates for enhancing light-matter interactions on a chip. In this book, we will introduce different ultra-high-Q whispering gallery microcavities, and focus on their applications in enhancing light-matter interaction, such as ultralow-threshold microlasing, highly sensitive optical biosensing, nonlinear optics, cavity quantum electrodynamics and cavity optomechanics.