Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators

Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators PDF Author: Tailen Hsing
Publisher: John Wiley & Sons
ISBN: 0470016914
Category : Mathematics
Languages : en
Pages : 363

Book Description
Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators provides a uniquely broad compendium of the key mathematical concepts and results that are relevant for the theoretical development of functional data analysis (FDA). The self–contained treatment of selected topics of functional analysis and operator theory includes reproducing kernel Hilbert spaces, singular value decomposition of compact operators on Hilbert spaces and perturbation theory for both self–adjoint and non self–adjoint operators. The probabilistic foundation for FDA is described from the perspective of random elements in Hilbert spaces as well as from the viewpoint of continuous time stochastic processes. Nonparametric estimation approaches including kernel and regularized smoothing are also introduced. These tools are then used to investigate the properties of estimators for the mean element, covariance operators, principal components, regression function and canonical correlations. A general treatment of canonical correlations in Hilbert spaces naturally leads to FDA formulations of factor analysis, regression, MANOVA and discriminant analysis. This book will provide a valuable reference for statisticians and other researchers interested in developing or understanding the mathematical aspects of FDA. It is also suitable for a graduate level special topics course.

Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators

Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators PDF Author: Tailen Hsing
Publisher: John Wiley & Sons
ISBN: 1118762568
Category : Mathematics
Languages : en
Pages : 368

Book Description
Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators provides a uniquely broad compendium of the key mathematical concepts and results that are relevant for the theoretical development of functional data analysis (FDA). The self–contained treatment of selected topics of functional analysis and operator theory includes reproducing kernel Hilbert spaces, singular value decomposition of compact operators on Hilbert spaces and perturbation theory for both self–adjoint and non self–adjoint operators. The probabilistic foundation for FDA is described from the perspective of random elements in Hilbert spaces as well as from the viewpoint of continuous time stochastic processes. Nonparametric estimation approaches including kernel and regularized smoothing are also introduced. These tools are then used to investigate the properties of estimators for the mean element, covariance operators, principal components, regression function and canonical correlations. A general treatment of canonical correlations in Hilbert spaces naturally leads to FDA formulations of factor analysis, regression, MANOVA and discriminant analysis. This book will provide a valuable reference for statisticians and other researchers interested in developing or understanding the mathematical aspects of FDA. It is also suitable for a graduate level special topics course.

Introduction to Functional Data Analysis

Introduction to Functional Data Analysis PDF Author: Piotr Kokoszka
Publisher: CRC Press
ISBN: 1498746691
Category : Mathematics
Languages : en
Pages : 371

Book Description
Introduction to Functional Data Analysis provides a concise textbook introduction to the field. It explains how to analyze functional data, both at exploratory and inferential levels. It also provides a systematic and accessible exposition of the methodology and the required mathematical framework. The book can be used as textbook for a semester-long course on FDA for advanced undergraduate or MS statistics majors, as well as for MS and PhD students in other disciplines, including applied mathematics, environmental science, public health, medical research, geophysical sciences and economics. It can also be used for self-study and as a reference for researchers in those fields who wish to acquire solid understanding of FDA methodology and practical guidance for its implementation. Each chapter contains plentiful examples of relevant R code and theoretical and data analytic problems. The material of the book can be roughly divided into four parts of approximately equal length: 1) basic concepts and techniques of FDA, 2) functional regression models, 3) sparse and dependent functional data, and 4) introduction to the Hilbert space framework of FDA. The book assumes advanced undergraduate background in calculus, linear algebra, distributional probability theory, foundations of statistical inference, and some familiarity with R programming. Other required statistics background is provided in scalar settings before the related functional concepts are developed. Most chapters end with references to more advanced research for those who wish to gain a more in-depth understanding of a specific topic.

Introductory Functional Analysis with Applications

Introductory Functional Analysis with Applications PDF Author: Erwin Kreyszig
Publisher: John Wiley & Sons
ISBN: 0471504599
Category : Mathematics
Languages : en
Pages : 706

Book Description
KREYSZIG The Wiley Classics Library consists of selected books originally published by John Wiley & Sons that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: Emil Artin Geometnc Algebra R. W. Carter Simple Groups Of Lie Type Richard Courant Differential and Integrai Calculus. Volume I Richard Courant Differential and Integral Calculus. Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics. Volume II Harold M. S. Coxeter Introduction to Modern Geometry. Second Edition Charles W. Curtis, Irving Reiner Representation Theory of Finite Groups and Associative Algebras Nelson Dunford, Jacob T. Schwartz unear Operators. Part One. General Theory Nelson Dunford. Jacob T. Schwartz Linear Operators, Part Two. Spectral Theory—Self Adjant Operators in Hilbert Space Nelson Dunford, Jacob T. Schwartz Linear Operators. Part Three. Spectral Operators Peter Henrici Applied and Computational Complex Analysis. Volume I—Power Senes-lntegrauon-Contormal Mapping-Locatvon of Zeros Peter Hilton, Yet-Chiang Wu A Course in Modern Algebra Harry Hochstadt Integral Equations Erwin Kreyszig Introductory Functional Analysis with Applications P. M. Prenter Splines and Variational Methods C. L. Siegel Topics in Complex Function Theory. Volume I —Elliptic Functions and Uniformizatton Theory C. L. Siegel Topics in Complex Function Theory. Volume II —Automorphic and Abelian Integrals C. L. Siegel Topics In Complex Function Theory. Volume III —Abelian Functions & Modular Functions of Several Variables J. J. Stoker Differential Geometry

Introduction to Functional Analysis

Introduction to Functional Analysis PDF Author: Christian Clason
Publisher: Springer Nature
ISBN: 3030527840
Category : Mathematics
Languages : en
Pages : 166

Book Description
Functional analysis has become one of the essential foundations of modern applied mathematics in the last decades, from the theory and numerical solution of differential equations, from optimization and probability theory to medical imaging and mathematical image processing. This textbook offers a compact introduction to the theory and is designed to be used during one semester, fitting exactly 26 lectures of 90 minutes each. It ranges from the topological fundamentals recalled from basic lectures on real analysis to spectral theory in Hilbert spaces. Special attention is given to the central results on dual spaces and weak convergence.

Perturbation theory for linear operators

Perturbation theory for linear operators PDF Author: Tosio Kato
Publisher: Springer Science & Business Media
ISBN: 3662126788
Category : Mathematics
Languages : en
Pages : 610

Book Description


Foundations of Data Science

Foundations of Data Science PDF Author: Avrim Blum
Publisher: Cambridge University Press
ISBN: 1108617360
Category : Computers
Languages : en
Pages : 433

Book Description
This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data.

Persistence Theory: From Quiver Representations to Data Analysis

Persistence Theory: From Quiver Representations to Data Analysis PDF Author: Steve Y. Oudot
Publisher: American Mathematical Soc.
ISBN: 1470434431
Category : Mathematics
Languages : en
Pages : 229

Book Description
Persistence theory emerged in the early 2000s as a new theory in the area of applied and computational topology. This book provides a broad and modern view of the subject, including its algebraic, topological, and algorithmic aspects. It also elaborates on applications in data analysis. The level of detail of the exposition has been set so as to keep a survey style, while providing sufficient insights into the proofs so the reader can understand the mechanisms at work. The book is organized into three parts. The first part is dedicated to the foundations of persistence and emphasizes its connection to quiver representation theory. The second part focuses on its connection to applications through a few selected topics. The third part provides perspectives for both the theory and its applications. The book can be used as a text for a course on applied topology or data analysis.

Functional Data Analysis with R and MATLAB

Functional Data Analysis with R and MATLAB PDF Author: James Ramsay
Publisher: Springer Science & Business Media
ISBN: 0387981853
Category : Computers
Languages : en
Pages : 213

Book Description
The book provides an application-oriented overview of functional analysis, with extended and accessible presentations of key concepts such as spline basis functions, data smoothing, curve registration, functional linear models and dynamic systems Functional data analysis is put to work in a wide a range of applications, so that new problems are likely to find close analogues in this book The code in R and Matlab in the book has been designed to permit easy modification to adapt to new data structures and research problems

Linear Algebra Done Right

Linear Algebra Done Right PDF Author: Sheldon Axler
Publisher: Springer Science & Business Media
ISBN: 9780387982595
Category : Mathematics
Languages : en
Pages : 276

Book Description
This text for a second course in linear algebra, aimed at math majors and graduates, adopts a novel approach by banishing determinants to the end of the book and focusing on understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space has an eigenvalue. The book starts by discussing vector spaces, linear independence, span, basics, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite- dimensional spectral theorem. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition features new chapters on diagonal matrices, on linear functionals and adjoints, and on the spectral theorem; some sections, such as those on self-adjoint and normal operators, have been entirely rewritten; and hundreds of minor improvements have been made throughout the text.